963 resultados para electron cyclotron resonance
Resumo:
研制成功了一台强流高电荷态全永磁ECR(Electron Cyclotron Resonance)离子源LAPECR2(Lanzhou All Permanent Magnet ECR Ion Source No.2)。该离子源在完成磁体装配后已成功在近代物理研究所320 kV高压平台上安装就位,与后束运线完成对接组装。离子源于2005年7月在14.5 GHz实现了第一次成功起弧,并引出较强的混合束流。目前离子源已与后束线以及部分实验终端完成了联调,在实验终端能够获得强流较高电荷态的离子束流。本文将着重论述该全永磁源的结构技术特点和主要参数指标。本文还着重论述了LAPECR2离子源在14.5 GHz微波功率馈入条件下的初步调试结果,在此基础上对束流向实验终端联调的实验结果进行了讨论,着重分析了影响束流引出与传输效率的主要因素。
Resumo:
热电子在ECR(Electron Cyclotron Resonance)源中有着非常重要的作用,为了研究ECR源的工作参数(微波功率、磁场等)对热电子的影响,我们对SECRAL(Superconducting ECR ion source with Advanced design in Lanzhou)等离子体在轴向发出的轫致辐射谱进行了系统的测量。从测得的轫致辐射谱中我们得到用来衡量热电子能量的参考量——光谱温度Tspe,并且对ECR源的几个工作参数与Tspe的关系进行了讨论。
Resumo:
研制了一台体积和重量都较大、设计性能较高的全永磁电子回旋共振(Electron cyclotron resonance, ECR)离子源LAPECR2(Lanzhou all permanent magnetic ECR ion source No.2)。该离子源将用于中国科学院近代物理研究所320 kV高压平台,为其提供强流高电荷态离子束流。LAPECR2的研制采用全新的全永磁磁体结构设计,通过采用高性能的NdFeB永磁材料、优化的磁结构设计以及精确的计算,实测源体的磁场参数能达到高性能ECR离子源的设计要求。离子源采用较高频率的14.5 GHz微波馈入加热等离子体,波导直接馈入离子源以增强馈入微波的稳定性与效率。此外,还大量采用了一些有利于提高离子源高电荷态离子产额的关键技术,如铝内衬等离子体弧腔、负偏压盘、铝制等离子体电极、三电极引出系统、辅助掺气等。
Resumo:
In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).
Resumo:
Electron cyclotron resonance (ECR) ion sources have been used for atomic physics research for a long time. With the development of atomic physics research in the Institute of Modern Physics (IMP), additional high performance experimental facilities are required. A 300 kV high voltage (HV) platform has been under construction since 2003, and an all permanent magnet ECR ion source is supposed to be put on the platform. Lanzhou all permanent magnet ECR ion source No. 2 (LAPECR2) is a latest developed all permanent magnet ECRIS. It is a 900 kg weight and circle divide 650 mm X 562 mm outer dimension (magnetic body) ion source. The injection magnetic field of the source is 1.28 T and the extraction magnetic field is 1.07 T. This source is designed to be running at 14.5 GHz. The high magnetic field inside the plasma chamber enables the source to give good performances at 14.5 GHz. LAPECR2 source is now under commissioning in IMP. In this article, the typical parameters of the source LAPECR2 are listed, and the typical results of the preliminary commissioning are presented.
Resumo:
The high charge state all permanent Electron Cyclotron Resonance Ion Source (ECRIS) LAPECR2 (Lanzhou All Permanent magnet ECR ion source No.2) has been successfully put on the 320kV HV platform at IMP and also has been connected with the successive LEBT system. This source is the largest and heaviest all permanent magnet ECRIS in the world. The maximum mirror field is 1.28T (without iron plug) and the effective plasma chamber volume is as large as circle divide 67mm x 255mm. It was designed to be operated at 14.5GHz and aimed to produce medium charge state and high charge state gaseous and also metallic ion beams. The source has already successfully delivered some intense gaseous ion beams to successive experimental terminals. This paper will give a brief overview of the basic features of this permanent magnet ECRIS. Then commissioning results of this source on the platform, the design of the extraction system together with the successive LEBT system will be presented.
Resumo:
Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e mu A of Xe37+, 1 e mu A of Xe43+, and 0.16 e mu A of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e mu A of Bi31+, 22 e mu A of Bi41+, and 1.5 e mu A of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.
Resumo:
Some superconducting magnets research at IMP (Institute of Modern Physics, CAS, Lanzhou) will be described in this paper. Firstly, a superconducting electron cyclotron resonance ion source (SECRAL) was successfully built to produce intense beams of highly charged heavy ions for Heavy Ion Research Facility in Lanzhou (HIRFL). An innovation design of SECRAL is that the three axial solenoid coils are located inside of a sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. Some excellent results of ion beam intensity have been produced and SECRAL has been put into operation to provide highly charged ion beams for HIRFL since May 2007. Secondly, a super-ferric dipole prototype of FAIR Super-FRS is being built by FCG (FAIR China Group) in cooperation with GSI. Its superconducting coils and cryostat is made and tested in the Institute of Plasma Physics (IPP, Hefei), and it more 50 tons laminated yoke was made in IMP. This super-ferric dipole static magnetic field was measured in IMP, it reach to the design requirement, ramping field and other tests will be done in the future. Thirdly, a 3 T superconducting homogenous magnetic field solenoid with a 70 mm warm bore has been developed to calibrate Hall sensor, some testing results is reported. And a penning trap system called LPT (Lanzhou Penning Trap) is now being developed for precise mass measurements.
Resumo:
Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) Cq+ (q=5,6), Oq+ (q=6,7,8), and Neq+ (q=7,8) colliding with the molecular species H2O, CO, and CO2. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62–3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O6+ (0.56 keV/amu) on CO and CO2 and 3.5q keV for O5+ (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.
Resumo:
A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100–150 °C) might be the best choice.
Resumo:
We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.
Resumo:
A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra. The approaches developed here are aimed at resolving one of the fundamental problems of molecular spectroscopy, the apparent incompatibility in existing techniques between high information content (and therefore good species discrimination) and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established methods for trapping ions in high magnetic field and observing the trapping frequencies with high resolution (<1 Hz) and sensitivity (single ion) by electrical means. The introduction of a magnetic bottle field gradient couples the spin and spatial motions together and leads to a small spin-dependent force on the ion, which has been exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment.
A series of fundamental innovations is described m order to extend magnetic resonance to the higher masses of molecular ions (100 amu = 2x 10^5 electron masses) and smaller magnetic moments (nuclear moments = 10^(-3) of the electron moment). First, it is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Second, adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Third, methods of inducing spindependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency.
The dissertation explores the basic concepts behind ion trapping, adopting a variety of classical, semiclassical, numerical, and quantum mechanical approaches to derive spin-dependent effects, design experimental sequences, and corroborate results from one approach with those from another. The first proposal presented builds on Dehmelt's experiment by combining a "before and after" detection sequence with novel signal processing to reveal ESR spectra. A more powerful technique for ESR is then designed which uses axially synchronized spin transitions to perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. A third use of the magnetic bottle is to selectively trap ions with small initial kinetic energy. A dechirping algorithm corrects for undesired frequency shifts associated with damping by the measurement process.
The most general approach presented is spin-locked internally resonant ion cyclotron excitation, a true continuous Stern-Gerlach effect. A magnetic field gradient modulated at both the Larmor and cyclotron frequencies is devised which leads to cyclotron acceleration proportional to the transverse magnetic moment of a coherent state of the particle and radiation field. A preferred method of using this to observe NMR as an axial frequency shift is described in detail. In the course of this derivation, a new quantum mechanical description of ion cyclotron resonance is presented which is easily combined with spin degrees of freedom to provide a full description of the proposals.
Practical, technical, and experimental issues surrounding the feasibility of the proposals are addressed throughout the dissertation. Numerical ion trajectory simulations and analytical models are used to predict the effectiveness of the new designs as well as their sensitivity and resolution. These checks on the methods proposed provide convincing evidence of their promise in extending the wealth of magnetic resonance information to the study of collisionless ions via single-ion spectroscopy.