230 resultados para electrocatalysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be correlated to its potent antioxidant capacity. Novel maghemite (gamma-Fe3O4) nanoparticles, characterized by a diameter of about 10 nm and possessing peculiar colloidal properties and surface interactions, called Surface Active Maghemite Nanoparticles (SAMN), were superficially modified with curcumin by simple incubation, due to the presence of under-coordinated Fe(III) atoms on nanoparticle surface. The resulting curcumin-modified SAMNs (SAMN@curcumin) were characterized by transmission electron microscopy (TEM), FTIR, Mossbauer, EPR and UV-Vis spectroscopy. The redox properties of bound curcumin were tested by electrochemistry. Finally, SAMN@curcumin was studied in the presence of different electroactive substances, namely hydroquinone, NADH and ferrocyanide, in order to assess its electrochemical behavior. Moreover, SAMN@curcumin was electrochemically tested in the presence of one of the most diffuse reactive oxygen specie, such as hydrogen peroxide, demonstrating its stability. SAMN@curcumin in which curcumin is firmly bound, but still retaining its redox features represents a feasible adduct: a magnetically drivable nano-bio-conjugate mimicking free Curcumin redox behavior. The proposed nanostructured material could be exploited as magnetic drivable curcumin vehicle for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of silver nanoparticles (AgNps) and their activities towards the oxygen reduction reaction (ORR). Ultraviolet spectroscopy (UV-vis) and transmission electron microscopy confirmed the formation of poly(vinyl pyrrolidone)-protected colloidal AgNps through direct reduction of Ag+ by glycerol in alkaline medium at room temperature. For the ORR tests, the AgNps were directly produced onto carbon to yield the Ag/C catalyst. Levich plots revealed the process to occur via 2.7 electrons, suggesting that the carbon support contributes to the ORR. We discuss here possibilities of improving the catalytic properties of the Ag/C for ORR by optimizing the parameters of the synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since electrode electroactivity and stability depend directly on the nature, morphology, and structure of the material, we have investigated how modifications to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts affected catalyst activity. The structure and stability of the resulting materials were investigated after their submission to a large number of potential scans and to constant potential for a prolonged time period in sulfuric acid 0.5 mol L-1 and methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion 117 membrane together with the prepared Pt-RuOx anodes and a Pt cathode (from E-TEK), in order to compare the catalytic activity of the materials prepared by different methods. The stability studies demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before undergoing heat-treatment was more stable than the other prepared catalysts. The catalysts synthesized with the single resin consisting of Pt and Ru and subjected to ultrasound before heat-treatment furnished the highest power density in the single fuel cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.011208jes]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350 degrees C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm(-3), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the experimental study of the oscillatory electro-oxidation of glycerol on platinum under galvanostatic control. The system was investigated in both acidic and alkaline media and for different glycerol concentrations. In acidic supporting electrolyte, the oscillatory behavior is rather simple and the main features such as period, amplitude and waveform are barely affected by the glycerol concentration. A more complex picture including the presence of different temporal patterns and strong dependence with glycerol concentration emerges in alkaline medium. In both media, the composite oscillations visit two clearly discernible potential windows, and potential oscillations in alkaline media are observed only when the working electrode is kept stationary. The mechanistic implications of our findings are discussed in connection with available data obtained under close-to-equilibrium conditions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt extended surfaces and nanoparticle electrodes are used to understand the origin of anomalous activities for electrocatalytic reactions in alkaline electrolytes as a function of cycling/time. Scanning tunneling microscopy (STM) of the surfaces before and after cycling in alkaline electrolytes was used to understand the morphology of the impurities and their impact on the catalytic sites. The nature of the contaminant species is identified as 3d-transition metal cations, and the formation of hydr(oxy)oxides of these elements is established as the main reason for the observed behavior. We find that, while for the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) the blocking of the sites by the undesired 3d-transition metal hydr(oxy)oxide species leads to deactivation of the reaction activities, the CO oxidation reaction and the hydrogen evolution reaction (HER) can have beneficial effects from the same impurities, the latter being dependent on the exact nature of the adsorbing species. These results show the significance of impurities present in real electrolytes and their impact on electrocatalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the study of the ethanol oxidation reaction of a Pt/C Etek electrocatalyst that was supported on different substrates, such as gold, glassy carbon and carbon cloth treated with PTFE. In the ethanol oxidation reaction, the activity varies with the substrate, as well as the pathways for ethanol oxidation, as studied by an ATR-FTIR in situ setup using the carbon cloth as the electrocatalyst support. The electrocatalyst Pt/C supported on gold starts acetaldehyde production from ethanol oxidation at an onset potential of 0.1 V less than that observed for the same process on Teflon-treated carbon cloth. The Pt/C supported on the carbon cloth starts its CO2 production for the same oxidation process at 0.2 V less than on the Pt/C supported on gold substrate. The differences in catalytic activity for the ethanol oxidation reaction depend not only on the electrocatalyst but also on various electrode factors, such as the substrate, the roughness of the electrode and the charge transfer resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.