966 resultados para cyanoacetylene ro-vibrational spectroscopy spectral analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New compounds with the general formulae [(NH3)(L)ZnFE(CO4] (L = ethylenediamine, N-methylethylenediamine, N,N′-dimethylethylenediamine and 1,3-propanediamine) were prepared and studied by vibrational spectroscopy. The data suggest that they may be formulated as monomers with a trigonal bipyramidal configuration around the iron atom. © 1984.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vortex-induced motion (VIM) is a highly nonlinear dynamic phenomenon. Usual spectral analysis methods, using the Fourier transform, rely on the hypotheses of linear and stationary dynamics. A method to treat nonstationary signals that emerge from nonlinear systems is denoted Hilbert-Huang transform (HHT) method. The development of an analysis methodology to study the VIM of a monocolumn production, storage, and offloading system using HHT is presented. The purposes of the present methodology are to improve the statistics analysis of VIM. The results showed to be comparable to results obtained from a traditional analysis (mean of the 10% highest peaks) particularly for the motions in the transverse direction, although the difference between the results from the traditional analysis for the motions in the in-line direction showed a difference of around 25%. The results from the HHT analysis are more reliable than the traditional ones, owing to the larger number of points to calculate the statistics characteristics. These results may be used to design risers and mooring lines, as well as to obtain VIM parameters to calibrate numerical predictions. [DOI: 10.1115/1.4003493]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report results of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of vanadium oxide nanotubes. The observed EPR spectra are composed of a weak well-resolved spectrum of isolated V4+ ions on top of an intense and broad structure-less line shape, attributed to spin-spin exchanged V4+ clusters. With the purpose to deconvolute the structured weak spectrum from the composed broad line, a new approach based on the Krylov basis diagonalization method (KBDM) is introduced. It is based on the discrimination between broad and sharp components with respect to a selectable threshold and can be executed with few adjustable parameters, without the need of a priori information on the shape and structure of the lines. This makes the method advantageous with respect to other procedures and suitable for fast and routine spectral analysis, which, in conjunction with simulation techniques based on the spin Hamiltonian parameters, can provide a full characterization of the EPR spectrum. Results demonstrate and characterize the coexistence of two V4+ species in the nanotubes and show good progress toward the goal of obtaining high fidelity deconvoluted spectra from complex signals with overlapping broader line shapes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel coordination polymers with the formula {[Ln(2)(2,5-tdc)(3)(dmso)(2)].H2O}(n) (Ln = Tb(III) for (1) and Dy(III) for (2)), (2,5-tdc(2-) = 2,5-thiophenedicarboxylate and dmso = dimethylsulfoxide) have been synthesized by the diffusion method and characterized by thermal analysis, vibrational spectroscopy and single crystal X-ray diffraction analysis. Structure analysis reveals that 2,5-tdc(2-) play a versatile role toward different lanthanide ions to form three-dimensional metal-organic frameworks (MOFs) in which the lanthanides ions are heptacoordinated. Photophysical properties were studied using excitation and emission spectra, where the photoluminescence data show the high emission intensity of the characteristic transitions D-5(4 ->) F-7(J) (J= 6, 5, 4 and 3) for (1) and (F9/2 -> HJ)-F-4-H-6 (J = 15/2, 13/2 and 11/2) for (2), indicating that 2,5-tdc(2-) is a good sensitizer. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive structural and vibrational study of the potential metal-protein attenuating compound 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone is reported. X-ray diffraction data, as well as FT-IR and Raman frequencies, were compared with the respective theoretical values obtained from DFT calculations. Theory agrees well with experiment. In this context, an attempt of total assignment concerning the FT-IR and Raman spectra of the title compound was performed, shedding new light on previous partial assignments published elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. candidate thesis collects the research work I conducted under the supervision of Prof.Bruno Samor´ı in 2005,2006 and 2007. Some parts of this work included in the Part III have been begun by myself during my undergraduate thesis in the same laboratory and then completed during the initial part of my Ph.D. thesis: the whole results have been included for the sake of understanding and completeness. During my graduate studies I worked on two very different protein systems. The theorical trait d’union between these studies, at the biological level, is the acknowledgement that protein biophysical and structural studies must, in many cases, take into account the dynamical states of protein conformational equilibria and of local physico-chemical conditions where the system studied actually performs its function. This is introducted in the introductory part in Chapter 2. Two different examples of this are presented: the structural significance deriving from the action of mechanical forces in vivo (Chapter 3) and the complexity of conformational equilibria in intrinsically unstructured proteins and amyloid formation (Chapter 4). My experimental work investigated both these examples by using in both cases the single molecule force spectroscopy technique (described in Chapter 5 and Chapter 6). The work conducted on angiostatin focused on the characterization of the relationships between the mechanochemical properties and the mechanism of action of the angiostatin protein, and most importantly their intertwining with the further layer of complexity due to disulfide redox equilibria (Part III). These studies were accompanied concurrently by the elaboration of a theorical model for a novel signalling pathway that may be relevant in the extracellular space, detailed in Chapter 7.2. The work conducted on -synuclein (Part IV) instead brought a whole new twist to the single molecule force spectroscopy methodology, applying it as a structural technique to elucidate the conformational equilibria present in intrinsically unstructured proteins. These equilibria are of utmost interest from a biophysical point of view, but most importantly because of their direct relationship with amyloid aggregation and, consequently, the aetiology of relevant pathologies like Parkinson’s disease. The work characterized, for the first time, conformational equilibria in an intrinsically unstructured protein at the single molecule level and, again for the first time, identified a monomeric folded conformation that is correlated with conditions leading to -synuclein and, ultimately, Parkinson’s disease. Also, during the research work, I found myself in the need of a generalpurpose data analysis application for single molecule force spectroscopy data analysis that could solve some common logistic and data analysis problems that are common in this technique. I developed an application that addresses some of these problems, herein presented (Part V), and that aims to be publicly released soon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated someone of the main problems connected to the application of Tissue Engineering in the prosthetic field, in particular about the characterization of the scaffolding materials and biomimetic strategies adopted in order to promote the implant integration. The spectroscopic and thermal analysis techniques were usefully applied to characterize the chemico-physical properties of the materials such as – crystallinity; – relative composition in case of composite materials; – Structure and conformation of polymeric and peptidic chains; – mechanism and degradation rate; – Intramolecular and intermolecular interactions (hydrogen bonds, aliphatic interactions). This kind of information are of great importance in the comprehension of the interactions that scaffold undergoes when it is in contact with biological tissues; this information are fundamental to predict biodegradation mechanisms and to understand how chemico-physical properties change during the degradation process. In order to fully characterize biomaterials, this findings must be integrated by information relative to mechanical aspects and in vitro and in vivo behavior thanks to collaborations with biomedical engineers and biologists. This study was focussed on three different systems that correspond to three different strategies adopted in Tissue Engineering: biomimetic replica of fibrous 3-D structure of extracellular matrix (PCL-PLLA), incorporation of an apatitic phase similar to bone inorganic phase to promote biomineralization (PCL-HA), surface modification with synthetic oligopeptides that elicit the interaction with osteoblasts. The characterization of the PCL-PLLA composite underlined that the degradation started along PLLA fibres, which are more hydrophylic, and they serve as a guide for tissue regeneration. Moreover it was found that some cellular lines are more active in the colonization of the scaffold. In the PCL-HA composite, the weight ratio between the polymeric and the inorganic phase plays an essential role both in the degradation process and in the biomineralization of the material. The study of self-assembling peptides allowed to clarify the influence of primary structure on intermolecular and intermolecular interactions, that lead to the formation of the secondary structure and it was possible to find a new class of oligopeptides useful to functionalize materials surface. Among the analytical techniques used in this study, Raman vibrational spectroscopy played a major role, being non-destructive and non-invasive, two properties that make it suitable to degradation studies and to morphological characterization. Also micro-IR spectroscopy was useful in the comprehension of peptide structure on oxidized titanium: up to date this study was one of the first to employ this relatively new technique in the biomedical field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.