940 resultados para creating environments for interaction
Resumo:
The importance of informal institutions and in particular culture for entrepreneurship is a subject of ongoing interest. Past research has mostly concentrated on cross-national comparisons, cultural values and the direct effects of culture on entrepreneurial behaviour, but in the main found inconsistent results. We add a fresh perspective to this research stream by turning attention to community-level culture and cultural norms. We hypothesize indirect effects of cultural norms on venture emergence: Community-level cultural norms (performance-based culture and socially supportive institutional norms) impact important supply-side variables (entrepreneurial self-efficacy and entrepreneurial motivation) which in turn influence nascent entrepreneurs' success in creating operational ventures (venture emergence). We test our predictions on a unique longitudinal dataset, tracking nascent entrepreneurs' venture creation efforts over a five-year time span, and find evidence supporting them. Our research contributes to a more fine-grained understanding of how culture, in particular perceptions of community cultural norms, influences venture emergence. Based on these findings, we discuss how venture creation efforts can be supported. Our research highlights the embeddedness of entrepreneurial behaviour and its immediate antecedent beliefs in the local, community context. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The importance of informal institutions and in particular culture for entrepreneurship is a subject of ongoing interest. Past research has mostly concentrated on cross-national comparisons, cultural values, and the direct effects of culture on entrepreneurial behavior, but in the main found inconsistent results. The present research adds a fresh perspective to this research stream by turning attention to community-level culture and cultural norms. We hypothesize indirect effects of cultural norms on venture emergence. Specifically that community-level cultural norms (performance-based culture and socially-supportive institutional norms) impact important supply-side variables (entrepreneurial self-efficacy and entrepreneurial motivation) which in turn influence nascent entrepreneurs’ success in creating operational ventures (venture emergence). We test our predictions on a unique longitudinal data set (PSED II) tracking nascent entrepreneurs venture creation efforts over a 5 year time span and find evidence supporting them. Our research contributes to a more fine-grained understanding of how culture, in particular perceptions of community cultural norms, influences venture emergence. This research highlights the embeddedness of entrepreneurial behavior and its immediate antecedent beliefs in the local, community context.
Resumo:
Despite lake sensitivity to climate change, few Florida paleolimnological studies have focused on changes in hydrology. Evidence from Florida vegetation histories raise questions about long-term hydrologic history of Florida lakes, and a 25-year limnological dataset revealed recent climate-driven effects on Lake Annie. The objectives of this research are (1) to use modern diatom assemblages to develop methods for reconstruction of climatic and anthropogenic change (2) to reconstruct both long-term and recent histories of Lake Annie using diatom microfossils. Paleoenvironmental reconstruction models were developed from diatom assemblages of various habitat types from modern lakes. Plankton and sediment assemblages were similar, but epiphytes were distinct, suggesting differences in sediment delivery from different parts of the lakes. Relationships between a variety of physical and chemical data and the diatoms from each habitat type were explored. Total phosphorus (TP), pH, and color were found to be the most relevant variables for reconstruction, with sediment and epiphyte assemblages having the strongest relationships to those variables, six calibration models were constructed from the combination of these habitat types and environmental variables. Reconstructions utilizing the weighted averaging models in this study may be used to directly reveal TP, color, and pH changes from a sediment record, which might be suggestive of hydrologic change as well. These variables were reconstructed from the diatom record from both a long-term (11,000 year) and short-term (100 year) record and showed an interaction between climate-driven and local land-use impacts on Lake Annie. The long-term record begins with Lake Annie as a wetland, then the lake filled to a high stand around 4000 years ago. A period of relative stability after that point was interrupted near the turn of the last century by subtle changes in diatom communities that indicate acidification. Abrupt changes in the diatom communities around 1970 AD suggest recovery from acidification, but concurrent hydrologic change intensified anthropogenic effects on the lake. Diatom evidence for alkalization and phosphorus loading correspond to changes seen in the limnological record.
Resumo:
People’s authentic sense of place is being overshadowed by less authentic experiences referred to as placelessness. Consequently, a demand for experiential interior environments has surfaced. Experiential environmental and place attachment theories suggested that the relationships between self, others, and the environment are what encourage users in creating meaningful authentic experiences. This qualitative study explored the roles of the experiential interior architectural features in affording users of hospitality environments higher-level needs, such as meanings of place. For the case study, ten participants stayed at a hotel for two nights. Participants were given a guided list of ten facets of an experience, which was insidiously structured by both experiential environmental and place attachment theories. The participants used photographs to document each of the facets on the guided list. The photos were then used during the photo elicitation interviews, which evoked additional qualitative information. Participants identified specific interior architectural features and described them using the themes associated to place attachment theories. The findings revealed that the interior architectural features might enrich the meanings a person associates with a given place. Possibly affording users higher-level needs. As a result, if an experiential interior environment allows users to foster relationships between self, others, and the physical environment, they may experience more authentic experiences and give more meanings to a place.
Resumo:
Vegetation patterns of mangroves in the Florida Coastal Everglades (FCE) result from the interaction of environmental gradients and natural disturbances (i.e., hurricanes), creating an array of distinct riverine and scrub mangroves across the landscape. We investigated how landscape patterns of biomass and total net primary productivity (NPPT), including allocation in above- and below-ground mangrove components, vary inter-annually (2001–2004) across gradients in soil properties and hydroperiod in two distinct FCE basins: Shark River Estuary and Taylor River Slough. We propose that the allocation of belowground biomass and productivity (NPPB) relative to aboveground allocation is greater in regions with P limitation and permanent flooding. Porewater sulfide was significantly higher in Taylor River (1.2 ± 0.3 mM) compared to Shark River (0.1 ± 0.03 mM) indicating the lack of a tidal signature and more permanent flooding in this basin. There was a decrease in soil P density and corresponding increase in soil N:P from the mouth (28) to upstream locations (46–105) in Shark River that was consistent with previous results in this region. Taylor River sites showed the highest P limitation (soil N:P > 60). Average NPPT was double in higher P environments (17.0 ± 1.1 Mg ha−1 yr−1) compared to lower P regions (8.3 ± 0.3 Mg ha−1 yr−1). Root biomass to aboveground wood biomass (BGB:AWB) ratio was 17 times higher in P-limited environments demonstrating the allocation strategies of mangroves under resource limitation. Riverine mangroves allocated most of the NPPT to aboveground (69%) while scrub mangroves showed the highest allocation to belowground (58%). The total production to biomass (P:B) ratios were lower in Shark River sites (0.11 yr−1); whereas in Taylor River sites P:B ratios were higher and more variable (0.13–0.24 yr−1). Our results suggest that the interaction of lower P availability in Taylor River relative to Shark River basin, along with higher sulfide and permanent flooding account for higher allocation of belowground biomass and production, at expenses of aboveground growth and wood biomass. These distinct patterns of carbon partitioning between riverine and scrub mangroves in response to environmental stress support our hypothesis that belowground allocation is a significant contribution to soil carbon storage in forested wetlands across FCE, particularly in P-limited scrub mangroves. Elucidating these biomass strategies will improve analysis of carbon budgets (storage and production) in neotropical mangroves and understanding what conditions lead to net carbon sinks in the tropical coastal zone.
Resumo:
The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^
Resumo:
Salutogenesis is now accepted as a part of the contemporary model of disease: an individual is not only affected by pathogenic factors in the environment, but those that promote well-being or salutogenesis. Given that "environment" extends to include the built environment, promotion of salutogenesis has become part of the architectural brief for contemporary healthcare facilities, drawing on an increasing evidence-base. Salutogenesis is inextricably linked with the notion of person-environment "fit". MyRoom is a proposal for an integrated architectural and pervasive computing model, which enhances psychosocial congruence by using real-time data indicative of the individual's physical status to enable the environment of his/her room (colour, light, temperature) to adapt on an on-going basis in response to bio-signals. This work is part of the PRTLI-IV funded programme NEMBES, investigating the use of embedded technologies in the built environment. Different care contexts require variations in the model, and iterative prototyping investigating use in different contexts will progressively lead to the development of a fully-integrated adaptive salutogenic single-room prototype.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
The study of the Upper Jurassic-Lower Cretaceous deposits (Higueruelas, Villar del Arzobispo and Aldea de Cortés Formations) of the South Iberian Basin (NW Valencia, Spain) reveals new stratigraphic and sedimentological data, which have significant implications on the stratigraphic framework, depositional environments and age of these units. The Higueruelas Fm was deposited in a mid-inner carbonate platform where oncolitic bars migrated by the action of storms and where oncoid production progressively decreased towards the uppermost part of the unit. The overlying Villar del Arzobispo Fm has been traditionally interpreted as an inner platform-lagoon evolving into a tidal-flat. Here it is interpreted as an inner-carbonate platform affected by storms, where oolitic shoals protected a lagoon, which had siliciclastic inputs from the continent. The Aldea de Cortés Fm has been previously interpreted as a lagoon surrounded by tidal-flats and fluvial-deltaic plains. Here it is reinterpreted as a coastal wetland where siliciclastic muddy deposits interacted with shallow fresh to marine water bodies, aeolian dunes and continental siliciclastic inputs. The contact between the Higueruelas and Villar del Arzobispo Fms, classically defined as gradual, is also interpreted here as rapid. More importantly, the contact between the Villar del Arzobispo and Aldea de Cortés Fms, previously considered as unconformable, is here interpreted as gradual. The presence of Alveosepta in the Villar del Arzobispo Fm suggests that at least part of this unit is Kimmeridgian, unlike the previously assigned Late Tithonian-Middle Berriasian age. Consequently, the underlying Higueruelas Fm, previously considered Tithonian, should not be younger than Kimmeridgian. Accordingly, sedimentation of the Aldea de Cortés Fm, previously considered Valangian-Hauterivian, probably started during the Tithonian and it may be considered part of the regressive trend of the Late Jurassic-Early Cretaceous cycle. This is consistent with the dinosaur faunas, typically Jurassic, described in the Villar del Arzobispo and Aldea de Cortés Fms.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
The integration of cultural elements into the operational planning process is a complex task that requires practical and theroretical tools for a wide comprehension of the context to help solve the problem. This article shows the results of an empirical research which presents conflicting cultural factors as the starting point for the construction of mediating structures. The main result of our research is a partial cognitive structure, a system of ideas, represented in a template listing the basic conflictive factors at the tactical level that military could find in the development of their tasks. The template is also a valuable aid to design military training curricula and to be applied to any post-conflict stability operation in complex environments resulting from irregular or asymmetric conflicts.
Resumo:
Background: Sociocultural theories state that learning results from people participating in contexts where social interaction is facilitated. There is a need to create such facilitated pedagogical spaces where participants share their ways of knowing and doing. The aim of this exploratory study was to introduce pedagogical space for sociocultural interaction using ‘Identity Text’.
Methods: Identity texts are sociocultural artifacts produced by participants, which can be written, spoken, visual, musical, or multimodal. In 2013, participants of an international medical education fellowship program were asked to create their own Identity Texts to promote discussion about participants’ cultural backgrounds. Thematic analysis was used to make the analysis relevant to studying the pedagogical utility of the intervention.
Result: The Identity Text intervention created two spaces: a ‘reflective space’ helped
participants reflect on sensitive topics like institutional environments, roles in
interdisciplinary teams, and gender discrimination. A ‘narrative space’ allowed
participants to tell powerful stories that provided cultural insights and challenged cultural hegemony; they described the conscious and subconscious transformation in identity that evolved secondary to struggles with local power dynamics and social demands involving the impact of family, peers and country of origin.
Conclusion: Whilst the impact of providing pedagogical space using Identity Text on
cognitive engagement and enhanced learning requires further research, the findings of
this study suggest that it is a useful pedagogical strategy to support cross-cultural
education.
Resumo:
Certain environments can inhibit learning and stifle enthusiasm, while others enhance learning or stimulate curiosity. Furthermore, in a world where technological change is accelerating we could ask how might architecture connect resource abundant and resource scarce innovation environments? Innovation environments developed out of necessity within urban villages and those developed with high intention and expectation within more institutionalized settings share a framework of opportunity for addressing change through learning and education. This thesis investigates formal and informal learning environments and how architecture can stimulate curiosity, enrich learning, create common ground, and expand access to education. The reason for this thesis exploration is to better understand how architects might design inclusive environments that bring people together to build sustainable infrastructure encouraging innovation and adaptation to change for years to come. The context of this thesis is largely based on Colin McFarlane’s theory that the “city is an assemblage for learning” The socio-spatial perspective in urbanism, considers how built infrastructure and society interact. Through the urban realm, inhabitants learn to negotiate people, space, politics, and resources affecting their daily lives. The city is therefore a dynamic field of emergent possibility. This thesis uses the city as a lens through which the boundaries between informal and formal logics as well as the public and private might be blurred. Through analytical processes I have examined the environmental devices and assemblage of factors that consistently provide conditions through which learning may thrive. These parameters that make a creative space significant can help suggest the design of common ground environments through which innovation is catalyzed.
Resumo:
In vitro experimental environments are used to study interactions between microorganisms, and predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to closely match the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation was studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25oC and 30oC). Competition experiments showed interaction between main effects of aflatoxin accumulation and environment at 25oC, but not so at 30oC. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-hour incubation in different experimental environments. Whereas, all fungi incubated within the soil environment survived; in the cotton-wool environment, none of the competitors of A. flavus survived at 30 oC. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post harvest.
Resumo:
Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.