996 resultados para correlation fermion electron hubbard dmft
Resumo:
One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
Resumo:
The electron spin precession about an external magnetic field was studied by Faraday rotation on an inhomogeneous ensemble of singly charged, self-assembled (In,Ga)As/GaAs quantum dots. From the data the dependence of electron g-factor on optical transition energy was derived. A comparison with literature reports shows that the electron g-factors are quite similar for quantum dots with very different geometrical parameters, and their change with transition energy is almost identical. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588413]
Resumo:
The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.
Resumo:
We present the measurement of nonphotonic electron production at high transverse momentum (p(T) > 2.5 GeV/c) in p + p collisions at root s = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured nonphotonic electron cross sections with previously published RHIC data and perturbative quantum chromodynamics calculations. Using the relative contributions of B and D mesons to nonphotonic electrons, we determine the integrated cross sections of electrons (e++e-2/2) at 3 GeV/c < p(T) < 10 GeV/c from bottom and charm meson decays to be [(d sigma((B -> e)+(B -> D -> e))/(dy(e))](ye=0) 4.0 +/- 0.5(stat) +/- 1.1(syst) nb and [(d sigma(D -> e))/(dy(e))](ye=0) = 6.2 +/- 0.7(stat) +/- 1.5(syst) nb, respectively.
Resumo:
The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).
Resumo:
We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component.
Resumo:
The longitudinal resistivity rho(xx) of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density-magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings ""break'' at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (similar to 50%) within, consistent with the NMR data of Zhang et al. [Phys. Rev. Lett. 98, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation effects leads to a collapse of the rings at some critical angle theta(c), in agreement with the data of Guo et al. [Phys. Rev. B 78, 233305 (2008)].
Resumo:
We investigate entanglement of strongly interacting fermions in spatially inhomogeneous environments. To quantify entanglement in the presence of spatial inhomogeneity, we propose a local-density approximation (LDA) to the entanglement entropy, and a nested LDA scheme to evaluate the entanglement entropy on inhomogeneous density profiles. These ideas are applied to models of electrons in superlattice structures with different modulation patterns, electrons in a metallic wire in the presence of impurities, and phase-separated states in harmonically confined many-fermion systems, such as electrons in quantum dots and atoms in optical traps. We find that the entanglement entropy of inhomogeneous systems is strikingly different from that of homogeneous systems.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.
Resumo:
The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.
Resumo:
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully nonempirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
We derive a closed analytical expression for the exchange energy of the three-dimensional interacting electron gas in strong magnetic fields, which goes beyond the quantum limit (L=0) by explicitly including the effect of the second, L=1, Landau level and arbitrary spin polarization. The inclusion of the L=1 level brings the fields to which the formula applies closer to the laboratory range, as compared to previous expressions, valid only for L=0 and complete spin polarization. We identify and explain two distinct regimes separated by a critical density n(c). Below n(c), the per particle exchange energy is lowered by the contribution of L=1, whereas above n(c) it is increased. As special cases of our general equation we recover various known more limited results for higher fields, and we identify and correct a few inconsistencies in some of these earlier expressions.