1000 resultados para composite femur


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of vibrations of multifiber composite shells is presented. Special attention is paid to the effect of composition of different fibers on the frequency spectrum of a freely vibrating cylindrical shell. The numerical results indicate clustering of frequency spectrum of a freely vibrating cylindrical composite shell as compared with the isotropic shell, and the spectrum varies considerably with the composition of the constituent materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstrat is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic composite membranes comprising Nation with inorganic materials such as silica, mesoporous zirconium phosphate (MZP) and mesoporous titanium phosphate (MTP) are fabricated and evaluated as proton-exchange-membrane electrolytes for direct methanol fuel cells (DMFCs). For Nation-silica composite membrane, silica is impregnated into Nation matrix as a sol by a novel water hydrolysis process precluding the external use of an acid. Instead, the acidic nature of Nation facilitates in situ polymerization reaction with Nation leading to a uniform composite membrane. The rapid hydrolysis and polymerization reaction while preparing zirconia and titania sols leads to uncontrolled thickness and volume reduction in the composite membranes, and hence is not conducive for casting membranes. Nafion-MZP and Nafion-MTP composite membranes are prepared by mixing pre-formed porous MZP and MTP with Nation matrix. MZP and MTP are synthesised by co-assembly of a tri-block co-polymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide/titanium isopropoxide and phosphorous trichloride as inorganic precursors. Methanol release kinetics is studied by volume-localized NMR spectroscopy (employing ``point resolved spectroscopy'', PRESS), the results clearly demonstrating that the incorporation of inorganic fillers in Nation retards the methanol release kinetics under osmotic drag. Appreciable proton conductivity with reduced methanol permeability across the composite membranes leads to improved performance of DMFCs in relation to commercially available Nafion-117 membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An "atomic layer-by-layer" structure of Co3O4/graphene is developed as an anode material for lithium-ion batteries. Due to the atomic thickness of both the Co3O4 nanosheets and the graphene, the composite exhibits an ultrahigh specific capacity of 1134.4 mAh g-1 and an ultralong life up to 2000 cycles at 2.25 C, far beyond the performances of previously reported Co3O4/C composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g-1 after 40 cycles at a current density of 25 mA g-1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for strain release, but also provide excellent electrically conducting channels, while the nanosized Ge particles contribute to improving the discharge capacity of the paper anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaZr0.8Y0.2O3- (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr 0.1Y0.2O3--NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt BZY and 50 wt NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 cm2 at 600C). The 50 wt BZY and 50 wt NiO anode prepared by combustion also showed superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ bulk ultrafine bimodal eutectic Al-Cu-Si composite was synthesized by solidification. This heterostructured composite with microstructural length scale hierarchy in the eutectic microstructure, which combines an ultrafine-scale binary cellular eutectic (alpha-Al + Al2Cu) and a nanometer-sized anomalous ternary eutectic (alpha-Al + Al2Cu + Si), exhibits high fracture strength (1.1 +/- 0.1 GPa) and large compressive plastic strain (11 +/- 2%) at room temperature. The improved compressive plasticity of the bimodal-nanoeutectic composite originates from homogeneous and uniform distribution of inhomogeneous plastic deformation (localized shear bands), together with strong interaction between shear bands in the spatially heterogeneous structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-standard finite difference methods (NSFDM) introduced by Mickens [Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers–Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791–797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250–2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235–276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter (λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave propagation and its frequency bandgaps in a parametrically modulated composite laminate are reported in this paper. The modulated properties under considerations are due to periodic microstructure, for example honeycomb core sandwich composite, which can be parameterized and homogenized in a suitable scale. Wave equations are derived by assuming a third-order shear deformation theory. Homogenization of the wave equations is carried out in the scale of wavelength. In-plane wave and flexural-shear wave dispersions are obtained for a range of values of a stiffness modulation coefficient (alpha). A clear pattern of stop-bands is observed for alpha >= 4. To validate the band-gap phenomena, we take recourse to time domain response obtained from finite element simulation. As predicted by the proposed analytical technique, a distinct correlation between the chosen frequency band and the simulated wave arrival time and amplitude reduction is found. This promises practical applications of the proposed analytical technique to designing parametrically modulated composite laminate for wave suppression. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric outdoor insulators are being increasingly used for electrical power transmission and distribution in the recent years. One of the current topics of interest for the power transmission community is the aging of such outdoor polymeric insulators. A few research groups are carrying out aging studies at room temperature with wet period as an integral part of multistress aging cycle as specified by IEC standards. However, aging effect due to dry conditions alone at elevated temperatures and electric stress in the presence of radiation environment has probably not been explored. It is interesting to study and understand the insulator performance under dry conditions where wet periods are either rare or absent and to estimate the extent of aging caused by multiple stresses. This paper deals with the long-term accelerated multistress aging on full-scale 11 kV distribution class composite silicone rubber insulators. In order to assess the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they are subjected to accelerated aging in a specially designed multistress-aging chamber for 3800 hours. All the stresses are applied at an accelerated level. Using a data acquisition system developed for the work, leakage current has been monitored in LabVIEW environment. Chemical changes due to degradations have been studied using Energy Dispersive X-Ray analysis, Scanning Electron Microscope and Fourier transform Infrared Spectroscopy. Periodically different parameters like low molecular weight (LMW) molecular content, hydrophobicity, leakage current and surface morphology were monitored. The aging study is under progress and only intermediate results are presented in this paper.