911 resultados para carbon half-life
Resumo:
Objectives: To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate in paediatric patients. Patients and Methods: Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16-28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analysed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. Results: A one-compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (L/hr) = 11.4 × (WT /70.0)(0.75) and V/F (L) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 L/hr and 21.4 L, respectively, resulting in an elimination half-life of 11.2 hr. Conclusions: The range of estimated CL/F in the study population was 0.67-7.38 L/hr. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients
Resumo:
As a diagnostic of high-intensity laser interactions (> 10(19) W cm(-2)), the detection of radioactive isotopes is regularly used for the characterization of proton, neutron, ion, and photon beams. This involves sample removal from the interaction chamber and time consuming post shot analysis using NaI coincidence counting or Ge detectors. This letter describes the use of in situ detectors to measure laser-driven (p,n) reactions in Al-27 as an almost real-time diagnostic for proton acceleration. The produced Si-27 isotope decays with a 4.16 s half-life by the predominantly beta+ emission, producing a strong 511 keV annihilation peak. (c) 2006 American Institute of Physics.
Resumo:
The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.
Resumo:
Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 µg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.
Resumo:
1 Six male patients with alcoholic cirrhosis and seven normal control subjects were each given 80 mg twice daily of conventional propranolol for 1 week and 160 mg once daily of a long acting preparation (LA) of propranolol for 1 week. 2 Plasma propranolol levels were measured at regular intervals on the first and seventh days of both weeks and also following an acute intravenous infusion of 10 mg propranolol on a separate occasion. 3 After the single intravenous dose the elimination half-life tended to be prolonged in the cirrhotic group (median 7.15 h) compared with controls (median 2.92 h) (P = 0.055). 4 After multiple oral dosing with 80 mg twice daily of conventional propranolol the steady-state plasma concentration (Css), area under the curve (AUC tau), peak concentration (Cmax) and trough concentration (Cmin) were significantly higher in cirrhotic patients and the peak: trough ratio (Cmax/Cmin) was significantly lower than controls. 5 After multiple oral dosing with 160 mg LA once daily Cmin was significantly higher than Cmax/min significantly lower in cirrhotic patients; Css, AUC and Cmax were higher than controls but not statistically different. 6 Within both subject groups the bioavailability of 80 mg twice daily of conventional propranolol tended to be greater than 160 mg LA once daily. Cmax was significantly higher in both groups and Css higher in the cirrhotic group with conventional propranolol. 7 In the cirrhotic group the mean reduction in supine heart rate in the steady state was 31.8% with conventional 80 mg twice daily propranolol and 23.75% with 160 mg LA once daily.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The accumulation, depletion and partitioning of semicarbazide (SEM) and its parent compound nitrofurazone (NFZ) in eggs were studied using hens fed NFZ at therapeutic and sub-therapeutic levels. Dietary NFZ correlated strongly with NFZ and total SEM in eggs, while 28% of observed SEM was present in the form of parent NFZ. Depletion half-life in eggs was 2.4 days for SEM and 1.1 days for NFZ. NFZ accumulated preferentially in yolk (57-63%) as opposed to albumen, while 71-80% of SEM was found in yolk. In whole egg, 29% of SEM was present as tissue-bound residues compared with 80% in breast muscle. Whilst NFZ and SEM were partly degraded by pasteurization and spray drying, sufficient NFZ remained to suggest it might be detectable in egg powders when SEM is observed at low µg kg -1 concentrations. NFZ was detectable in whole eggs during ingestion of only 0.1% of the therapeutic NFZ dose, making detection of intact NFZ in eggs a feasible means to prove conclusively the administration of this banned compound.
Resumo:
Nitrofuran antibiotic residues in food continue to be of international concern. The finding of sources of semicarbazide (SEM), other than through the misuse of nitrofurazone, present a challenge to the use of SEM as a definitive marker residue for this drug. Detection of intact (parent) nitrofurazone would avoid confusion over the source of SEM residues. Broiler chickens were fed sub-therapeutic nitrofuran-containing diets and their tissues were analysed for parent compounds and metabolites by liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS). Depletion half-lives in muscle were longer for tissue-bound metabolite residues, 3.4 days - 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ) - to 4.5 days (SEM), than total metabolite residues, 2.0 days (AOZ) to 3.2 days (SEM). Metabolite concentrations were higher in eyes than in muscle. Metabolite half-lives in eyes ranged from 8.5 days (1-aminohydantoin (AHD)) to 20.3 days (SEM). Nitrofuran parent compounds were also detected in eyes. Furaltadone was detected in single eyes after 21 days' withdrawal of a 6 mg kg -1 furaltadone diet. When 50 eyes from broilers containing metabolites in muscle close to the 1 µg kg -1 minimum required performance level (MRPL) were pooled into single samples, 1.2 ng of furazolidone and 31.1 ng of furaltadone were detected, but nitrofurazone was not detected due to the long depletion half-life of SEM in muscle. Further studies are required to improve LC-MS/MS nitrofurazone sensitivity and refine the sample size necessary to use nitrofurazone detection in pooled eyes as a complement to SEM detection in muscle.
Resumo:
The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose -0.1-0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.
Resumo:
Gyps vultures across India are declining rapidly and the NSAID diclofenac has been shown to be the major cause. Vultures scavenge livestock carcasses that have been treated with diclofenac within the days preceding death. We present data on diclofenac disposition in Indian cow and goat, and field data on the prevalence of diclofenac in carcases in the environment. In the disposition experiment, animals were treated with a single intramuscular injection of diclofenac at 1000 microg kg-1 bw. In cow, diclofenac was detectable in liver, kidney and intestine up to 71 h post-treatment; in plasma, half-life was 12.2 h. In goat, tissue residues were undetectable after 26 h. Prevalence of diclofenac in liver from 36 dead livestock collected in the field was 13.9%. Data suggest that diclofenac residues in Indian cow and goat are short-lived, but diclofenac prevalence in carcasses available to vultures may still be very high.
Resumo:
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p <0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p <0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p <0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p <0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.
Resumo:
Objective: To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate (K-canrenoate) in paediatric patients.
Methods: Data were collected prospectively from 37 paediatric patients (median weight 2.9?kg, age range 2 days–0.85 years) who received intravenous K-canrenoate for management of retained fluids, for example in heart failure and chronic lung disease. Dried blood spot (DBS) samples (n?=?213) from these were analysed for canrenone content and the data subjected to pharmacokinetic analysis using nonlinear mixed-effects modelling. Another group of patients (n?=?16) who had 71 matching plasma and DBS samples was analysed separately to compare canrenone pharmacokinetic parameters obtained using the two different matrices.
Results: A one-compartment model best described the DBS data. Significant covariates were weight, postmenstrual age (PMA) and gestational age. The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) in DBS were CL/F (l/h)?=?12.86?×? (WT/70.0)0.75?×?e [0.066?×? (PMA?-?40]) and V/F (l)?=?603.30?×? (WT/70)?×?(GA/40)1.89 where weight is in kilograms. The corresponding values of CL/F and V/F in a patient with a median weight of 2.9?kg are 1.11?l/h and 20.48?l, respectively. Estimated half-life of canrenone based on DBS concentrations was similar to that based on matched plasma concentrations (19.99 and 19.37?h, respectively, in 70?kg patient).
Conclusion: The range of estimated CL/F in DBS for the study population was 0.12–9.62?l/h; hence, bodyweight-based dosage adjustment of K-canrenoate appears necessary. However, a dosing scheme that takes into consideration both weight and age (PMA/gestational age) of paediatric patients seems more appropriate.
Resumo:
Suitable ester prodrugs of 17b-estradiol are identified, thus permitting effective sustained and controlled estrogen replacement therapy (ERT) from an elastomeric, silicone intravaginal ring (IVR). IVR devices of reservoir design were prepared by blending silicone elastomer base with n-propylorthosilicate (cross-linker) and 10% w/w of 17b-estradiol or an ester prodrug, the mix being activated with 0.5% w/w stannous octoate and cured at 808C for 2 min. A rate-controlling membrane was similarly prepared, without the active agent. IVR devices were of cross-sectional diameter 9 mm, outer diameter 54 mm, with core cross-sectional diameter of 2 mm and core length varied as required. Sink conditions were evident for the 17b-estradiol esters in 1.0% aqueous benzalkonium chloride solution. The low release rates into 0.9% w/v saline of the lipophilic valerate and benzoate esters were due to their intrinsically low aqueous solubilities. In vivo, these esters failed to raise plasma estradiol above baseline levels in postmenopausal human volunteers, despite good in vitro release characteristics under sink conditions. The best release rates under sink conditions, in combination with substantial aqueous solubilities as indicated by the release rates into saline, were observed for the acetate and propionate esters. A
combination of drug release characteristics, short plasma half-life and a toxicologically acceptable hydrolysis product indicated that 17b-estradiol-3-acetate was the prodrug of choice for IVR delivery of ERT. In vivo, an IVR device releasing
100 mg/day of estradiol as its 3-acetate ester maintained over 84 days a circulating plasma concentration in the region of 300 pmol l , within the clinically desirable range for ERT.
Resumo:
Cytosolic phospholipase A2 (cPLA2) is thought to be the rate-limiting enzyme in the arachidonic acid/eicosanoid cascade. The ability of various agonists to increase steady-state cPLA2 mRNA levels has previously been reported. The current study delineates the contributions of transcriptional and post-transcriptional processes to the regulation of cPLA2 gene expression in response to a variety of agonists in cultured rat glomerular mesangial cells. Epidermal growth factor, platelet-derived growth factor, serum and phorbol myristate acetate all increase the half-life of cPLA2 mRNA transcripts, indicating a role for post-transcriptional modulation of gene expression. The presence of three ATTTA motifs in the 3' untranslated region (3'UTR) of the rat cPLA2 cDNA is ascertained. Heterologous expression of chimeric constructs with different 3'UTRs ligated into the 3' end of the luciferase coding region reveals that the presence of the cPLA2 3'UTR results in reduced luciferase activity compared with constructs without the cPLA2 3'UTR. Furthermore, the luciferase activity in the constructs with the cPLA2 3'UTR is increased in response to the same agonists which stabilize endogenous cPLA2 mRNA. A negligible effect of these agonists on transcriptional control of cPLA2 is evident using promoter-reporter constructs expressed in transient and stable transfectants. Taken together, these results indicate predominant post-transcriptional regulation of cPLA2 mRNA levels.
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
Aims: Preterm infants are deprived of the normal intra-uterine exposure to maternal melatonin and may benefit from replacement therapy. We conducted a pharmacokinetic study to guide potential therapeutic trials. Methods: Melatonin was administered to 18 preterm infants in doses ranging from 0.04-0.6μgkg-1 over 0.5-6h. Pharmacokinetic profiles were analyzed individually and by population methods. Results: Baseline melatonin was largely undetectable. Infants receiving melatonin at 0.1μgkg-1h-1 for 2h showed a median half-life of 15.82h and median maximum plasma concentration of 203.3pgml-1. On population pharmacokinetics, clearance was 0.045lh-1, volume of distribution 1.098l and elimination half-life 16.91h with gender (P = 0.047) and race (P < 0.0001) as significant covariates. Conclusions: A 2h infusion of 0.1μgkg-1h-1 increased blood melatonin from undetectable to approximately peak adult concentrations. Slow clearance makes replacement of a typical maternal circadian rhythm problematic. The pharmacokinetic profile of melatonin in preterm infants differs from that of adults so dosage of melatonin for preterm infants cannot be extrapolated from adult studies. Data from this study can be used to guide therapeutic clinical trials of melatonin in preterm infants. © 2013 The British Pharmacological Society.