993 resultados para burn decision scenarios
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Desde o seu aparecimento, a Internet teve um desenvolvimento e uma taxa de crescimento quase exponencial. Os mercados de comércio electrónico têm vindo a acompanhar esta tendência de crescimento, tornando-se cada vez mais comuns e populares entre comerciantes ou compradores/vendedores de ocasião. A par deste crescimento também foi aumentando a complexidade e sofisticação dos sistemas responsáveis por promover os diferentes mercados. No seguimento desta evolução surgiram os Agentes Inteligentes devido à sua capacidade de encontrar e escolher, de uma forma relativamente eficiente, o melhor negócio, tendo por base as propostas e restrições existentes. Desde a primeira aplicação dos Agentes Inteligentes aos mercados de comércio electrónico que os investigadores desta área, têm tentado sempre auto-superar-se arranjando modelos de Agentes Inteligentes melhores e mais eficientes. Uma das técnicas usadas, para a tentativa de obtenção deste objectivo, é a transferência dos comportamentos Humanos, no que toca a negociação e decisão, para estes mesmos Agentes Inteligentes. O objectivo desta dissertação é averiguar se os Modelos de Avaliação de Credibilidade e Reputação são uma adição útil ao processo de negociação dos Agente Inteligentes. O objectivo geral dos modelos deste tipo é minimizar as situações de fraude ou incumprimento sistemático dos acordos realizados aquando do processo de negociação. Neste contexto, foi proposto um Modelo de Avaliação de Credibilidade e Reputação aplicável aos mercados de comércio electrónico actuais e que consigam dar uma resposta adequada o seu elevado nível de exigência. Além deste modelo proposto também foi desenvolvido um simulador Multi-Agente com a capacidade de simular vários cenários e permitir, desta forma, comprovar a aplicabilidade do modelo proposto. Por último, foram realizadas várias experiências sobre o simulador desenvolvido, de forma a ser possível retirar algumas conclusões para o presente trabalho. Sendo a conclusão mais importante a verificação/validação de que a utilização de mecanismos de credibilidade e reputação são uma mais-valia para os mercado de comércio electrónico.
Resumo:
Um dos factores mais determinantes para o sucesso de uma organização é a qualidade das decisões tomadas. Para que as decisões tomadas sejam melhores e potenciem a competitividade das organizações, sistemas como os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) têm sido fortemente desenvolvidos e estudados nas últimas décadas. Cada vez mais, estes sistemas são populados com um maior número de dados, com o objectivo de serem mais assertivos. Considera-se que com determinados dados seja possível que o sistema possa aferir a satisfação dos participantes com as decisões tomadas, tendencialmente de forma automática. Hoje em dia, as análises de satisfação com as decisões não contemplam na sua maioria factores imprescindíveis, como os emocionais e de personalidade, sendo que os modelos existentes tendem a ser incompletos. Nesta dissertação propõe-se uma metodologia que permite a um SADG aferir a satisfação do participante com a decisão, considerando aspectos como a personalidade, as emoções e as expectativas. A metodologia desenvolvida foi implementada num SADG (ArgEmotionsAgents) com uma arquitectura multiagente, composto por agentes que reflectem participantes reais e que estão modelados com a sua personalidade. De acordo com a sua personalidade, esses agentes trocam argumentos persuasivos de forma a obterem uma decisão consensual. No processo de troca de argumentos os agentes geram emoções que afectam o seu humor. A implementação da metodologia no ArgEmotionsAgents permite que, no final de uma reunião, seja possível aferir a satisfação dos agentes participantes com a decisão final e com o processo que levou à tomada de decisão. De forma a validar a metodologia proposta bem como a implementação que foi desenvolvida, foram realizadas quatro experiências em diferentes cenários. Numa primeira experiência, foi aferida a satisfação dos quatro agentes participantes. Nas experiências seguintes, um dos agentes participantes foi usado como referência e foram alteradas configurações (expectativas, personalidade e reavaliação das alternativas) para perceber de que forma os vários factores afectam a satisfação. Com o estudo concluiu-se que todos os factores considerados no modelo afectam a satisfação. A forma como a satisfação é afectada por cada um dos factores vai ao encontro da lógica apresentada no estado da arte. Os resultados de satisfação aferidos pelo modelo são congruentes.
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
SMM09 Silesian Moodle Moot Conference 2009 12 - 13 November, Ostrava Sixth annual conference
Resumo:
Learnin management systems have gained an increasing role in the context of Higher Education Institutions as essential tools to support learning...
Resumo:
Proceedings of EULEARN09 - Intenational Conference and New Learning Technologies, Barcelona, Spain, 6-8 July
Resumo:
The remediation of contaminated sites supports the goal of sustainable development but may also have environmental impacts at a local, regional and global scale. Life cycle assessment (LCA) has increasingly been used in order to support site remediation decision-making. This review article discusses existing LCA methods and proposed models focusing on critical decisions and assumptions of the LCA application to site remediation activities. It is concluded that LCA has limitations as an adequate holistic decisionmaking tool since spatial and temporal differentiation of non-global impacts assessment is a major hurdle in site remediation LCA. Moreover, a consequential LCA perspective should be adopted when the different remediation services to be compared generate different site’s physical states, displacing alternative post-remediation scenarios. The environmental effects of the post-remediation stage of the site is generally disregarded in the past site remediation LCA studies and such exclusion may produce misleading conclusions and misdirected decision-making. In addition, clear guidance accepted by all stakeholders on remediation capital equipment exclusion and on dealing with multifunctional processes should be developed for site remediation LCA applications.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil
Resumo:
The aim of this report is to highlight the importance of foresight exercises as a necessary tool to help the decision makers, allowing through projections and identification of the main trends, the identification of the key variables of the process and which ones may have more influence in the process of evolution of societies. It will be presented some examples of prospective methods and also scenarios construction. One example is the European project WORKS (Work organization restructuring in the knowledge society) that pretend to built a set of scenarios about the possible evolution of work in Europe in a short, medium and long term, stressing the key variables that may have an important role in the process and their interconnections. Another exemple is the report ‘Future skill needs in Europe’ prepared in 2008 by Cedefop, that presents data about the future development of employment by industry, occupation and qualification by 2015.
Resumo:
Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems