597 resultados para beta7 integrin
Resumo:
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Ca (PKCa) and its subsequent interaction with ß1 integrin since disruption of PKCa binding to ß1 integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCa leading to its association with ß1 integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.
Resumo:
The region of tenascin-C containing only alternately spliced fibronectin type-III repeat D (fnD) increases neurite outgrowth by itself and also as part of tenascin-C. We previously localized the active site within fnD to an eight amino acid sequence unique to tenascin-C, VFDNFVLK, and showed that the amino acids FD and FV are required for activity. The purpose of this study was to identify the neuronal receptor that interacts with VFDNFVLK and to investigate the hypothesis that FD and FV are important for receptor binding. Function-blocking antibodies against both alpha7 and beta1 integrin subunits were found to abolish VFDNFVLK-mediated process extension from cerebellar granule neurons. VFDNFVLK but not its mutant, VSPNGSLK, induced clustering of neuronal beta1 integrin immunoreactivity. This strongly implicates FD and FV as important structural elements for receptor activation. Moreover, biochemical experiments revealed an association of the alpha7beta1 integrin with tenascin-C peptides containing the VFDNFVLK sequence but not with peptides with alterations in FD and/or FV. These findings are the first to provide evidence that the alpha7beta1 integrin mediates a response to tenascin-C and the first to demonstrate a functional role for the alpha7beta1 integrin receptor in CNS neurons.
Resumo:
Angiopoietin-1 (Ang-1) is an angiogenic growth factor that activates Tie-2 and integrins to promote vessel wall remodeling. The recent finding of the potential proatherogenic effects of Ang-1 prompted us to investigate whether Ang-1 promotes monocyte chemotaxis, endothelial binding, and transendothelial migration, key events in the progression of atherosclerosis. Here, we show that Ang-1 induces chemotaxis of monocytes in a manner that is independent of Tie-2 and integrin binding but dependent on phosphoinositide 3-kinase and heparin. In addition, Ang-1 promoted phosphoinositide 3-kinase-dependent binding of monocytes to endothelial monolayers and stimulated transendothelial migration. Fluorescence-activated cell sorting analysis showed that exogenous Ang-1 adheres directly to monocytes as well as to human umbilical endothelial cells, but neither Tie-2 mRNA nor protein were expressed by primary monocytes. Although Ang-1 binding to human umbilical endothelial cells was partially Tie-2 and integrin dependent, Ang-1 binding to monocytes was independent of these factors. Finally, preincubation of monocytes with soluble heparin abrogated Ang-1 binding to monocytes and migration, and partially prevented Ang-1 binding to human umbilical endothelial cells. In summary, Ang-1 induces chemotaxis of monocytes by a mechanism that is dependent on phosphoinositide 3-kinase and heparin but independent of Tie-2 and integrins. The ability of Ang-1 to recruit monocytes suggests it may play a role in inflammatory angiogenesis and may promote atherosclerosis.
Resumo:
Nel presente lavoro, ho studiato e trovato le soluzioni esatte di un modello matematico applicato ai recettori cellulari della famiglia delle integrine. Nel modello le integrine sono considerate come un sistema a due livelli, attivo e non attivo. Quando le integrine si trovano nello stato inattivo possono diffondere nella membrana, mentre quando si trovano nello stato attivo risultano cristallizzate nella membrana, incapaci di diffondere. La variazione di concentrazione nella superficie cellulare di una sostanza chiamata attivatore dà luogo all’attivazione delle integrine. Inoltre, questi eterodimeri possono legare una molecola inibitrice con funzioni di controllo e regolazione, che chiameremo v, la quale, legandosi al recettore, fa aumentare la produzione della sostanza attizzatrice, che chiameremo u. In questo modo si innesca un meccanismo di retroazione positiva. L’inibitore v regola il meccanismo di produzione di u, ed assume, pertanto, il ruolo di modulatore. Infatti, grazie a questo sistema di fine regolazione il meccanismo di feedback positivo è in grado di autolimitarsi. Si costruisce poi un modello di equazioni differenziali partendo dalle semplici reazioni chimiche coinvolte. Una volta che il sistema di equazioni è impostato, si possono desumere le soluzioni per le concentrazioni dell’inibitore e dell’attivatore per un caso particolare dei parametri. Infine, si può eseguire un test per vedere cosa predice il modello in termini di integrine. Per farlo, ho utilizzato un’attivazione del tipo funzione gradino e l’ho inserita nel sistema, valutando la dinamica dei recettori. Si ottiene in questo modo un risultato in accordo con le previsioni: le integrine legate si trovano soprattutto ai limiti della zona attivata, mentre le integrine libere vengono a mancare nella zona attivata.
Resumo:
This work was supported by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No 305316 as part of the MOTIF (Microbicides Optimisation Through Innovative Formulation for Vaginal and Rectal Delivery) project. We would like to extend our thanks to all the study participants for their invaluable contribution and to Grampian Biorepository staff for help with collection of fresh colorectal resection tissue.
Resumo:
Integrins are the main cell surface receptors by which cells adhere to the surrounding extracellular matrix (ECM). Cells regulate integrin-mediated adhesions by integrin endo/exocytic trafficking or by altering the integrin activation status. Integrin binding to ECM-components induces several intracellular signalling cascades, which regulate almost every aspect of cell behaviour from cell motility to survival, and dysregulation of integrin traffic or signalling is associated with cancer progression. Upon detachment, normal cells undergo a specialised form of programmed cell death namely anoikis and the ECM-integrin -mediated activation of focal adhesion kinase (FAK) signalling at the cell surface has been considered critical for anoikis suppression. Integrins are also constantly endocytosed and recycled back to the plasma membrane, and so far the role of integrin traffic in cancer has been linked to increased adhesion site turnover and cell migration. However, different growth factor receptors are known to signal also from endosomes, but the ability of integrins to signal from endosomes has not been previously studied. In this thesis, I demonstrate for the first time that integrins are signalling also from endosomes. In contrast to previous believes, integrin-induced focal adhesion kinase (FAK) signalling occurs also on endosomes, and the endosomal FAK signalling is critical for anoikis suppression and for cancer related processes such as anchorage-independent growth and metastasis. Moreover, we have set up a new integrin trafficking assay and demonstrate for the first time in a comprehensive manner that active and inactive integrins undergo distinct trafficking routes. Together these results open up new horizons in our understanding of integrins and highlight the fundamental connection between integrin traffic and signalling.
Resumo:
Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium.
Resumo:
Integrins are α/β-heterodimeric transmembrane adhesion receptors that mediate cell-cell and cell-ECM interactions. Integrins are bidirectional signalling receptors that respond to external signals (“outside-in” signalling) and in parallel, transduce internal signals to the matrix (“inside-out” signalling), to regulate vital cellular functions including migration, survival, growth and differentiation. Therefore, dysregulation of these tightly regulated processes often results in uncontrolled integrin activation and abnormal tissue expression that is responsible for many diseases. Because of their important roles in physiological and pathological events, they represent a validated target for therapeutic and diagnostic purposes. The aim of the present Thesis was focused on the development of peptidic ligands for α4β1 and αvβ3 integrin subtypes, involved in inflammatory responses (leukocytes recruitment and extravasation) and cancer progression (angiogenesis, tumor growth, metastasis), respectively. Following the peptidomimetic strategy, we designed and synthesized a small library of linear and cyclic hybrid α/β-peptidomimetics based on the phenylureido-LDV scaffolds for the treatment of chronic inflammatory autoimmune diseases. In order to implement a fast and non-invasive diagnostic method for monitoring the course of the inflammatory processes, a flat glass-surface of dye-loaded Zeolite L-crystal nanoparticles was coated with bioactive α4β1-peptidomimetics to detect specific integrin-expressing cells as biomarkers of inflammatory diseases. Targeted drug delivery has been considered a promising alternative to overcome the pharmacokinetic limitations of conventional anticancer drugs. Thus, a novel Small-Molecule Drug Conjugate was synthesized by connecting the highly cytotoxic Cryptophycin to the tumor-targeting RGDfK-peptide through a protease-cleavable linker. Finally, in view to making the peptide synthesis more sustainable and greener, we developed an alternative method for peptide bonds formation employing solvent-free mechanochemistry and ultra-mild minimal solvent-grinding conditions in common, inexpensive laboratory equipment. To this purpose, standard amino acids, coupling agents and organic-green solvents were used in the presence of nanocrystalline hydroxyapatite as a reusable, bio-compatible inorganic basic catalyst.
Resumo:
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Resumo:
Background: Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alpha v beta 3-integrin and low levels of RHOC. Methods: Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results: We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion: This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Resumo:
Background Low-intensity pulsed ultrasound stimulation (LIPUS) reportedly increases osteogenesis in fracture models but fails in intact bone, suggesting LIPUS does not act on mechanotransduction and growth factor pathways of intact bone. Questions/Purposes We asked whether daily 20-minute LIPUS applied to intact tibias would act on bone proteins involved in mechanotransduction (focal adhesion kinase [FAK], and extracellular signal-regulated kinase-1/2 [ERK-1/2]), and growth factor signaling (insulin receptor substrate-1 [IRS-1]) pathways at 7, 14, and 21 days of treatment. Methods Immunoblotting was performed to detect FAK, ERK-1/2, and IRS-1 expression and activation from the stimulated intact tibias at 7, 14, and 21 days of daily 20-minute LIPUS. Results LIPUS increased FAK expression (at 7 days), ERK-1/2 (at 14 days), and IRS-1 (at 7 days), but expression decreased 7 days later, indicating a noncumulative effect of LIPUS. As only FAK expression was detected at 21 days, these observations suggest LIPUS influences nuclear reactions that may be modulated by a major cellular mechanism preferentially inhibiting IRS-1 expression and not FAK expression. Increased ERK-1/2 expression at 14 days suggests the differing mechanisms for promoting ERK-1/2, FAK, and IRS-1 syntheses. IRS-1 expression behaved similarly to FAK expression; therefore, LIPUS may modulate growth factor pathways. LIPUS increased sustained FAK and ERK-1/2 activation, but not IRS-1, suggesting sustained ERK-1/2 activation is not the result of mechanically induced growth factor activation. Conclusions LIPUS acts on mechanotransduction and growth factor pathways in intact bone in a noncumulative manner. Clinical relevance These data suggest LIPUS applied to intact bone acts on proteins involved in osteogenesis.
Resumo:
The vascular effects of nitrolinoleate (LNO(2)), an endogenous product of linoleic acid (LA) nitration by nitric oxide-derived species and a potential nitrosating agent, were investigated on rat endothelial-leukocyte interactions. Confocal microscopy analysis demonstrated that LNO(2) was capable to deliver free radical nitric oxide ((center dot)NO) into cells, 5 min after its administration to cultured cells, with a peak of liberation at 30 min. THP-1 monocytes incubated with LNO(2) for 5 min presented nitrosation of CD40, leading to its inactivation. Other anti-inflammatory actions of LNO(2) were observed in vivo by intravital microscopy assays. LNO(2) decreased the number of adhered leukocytes in postcapillary venules of the mesentery network. In addition to this, LNO(2) reduced mRNA and protein expression of 2-integrin in circulating leukocytes, as well as VCAM-1 in endothelial cells isolated from postcapillary venules, confirming its antiadhesive effects on both cell types. Moreover, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, partially abolished the inhibitory action of LNO(2) on leukocyte-endothelium interaction, suggesting that the antiadhesion effects of LNO(2) involve a dual role in leukocyte adhesion, acting as a nitric oxide donor as well as through nitric oxide-independent mechanisms. In conclusion, LNO(2) inhibited adhesion molecules expression and promoted (center dot)NO inactivation of the CD40-CD40L system, both important processes of the inflammatory response. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Neospora caninum is an Apicomplexan protozoan that has the dog as a definitive host and cattle (among other animals) as intermediate hosts. It causes encephalopathy in dogs and abortion in cows, with significant loss in worldwide livestock. As any Apicomplexan, the parasite invades the cells using proteins contained in the phylum-specific organelles, like the micronemes, rhoptries and dense granules. The aim of this study was the characterization of a homologue (denominated NcMIC2-like1) of N. caninum thrombospondin-related anonymous protein (NcMIC2), a micronemal protein previously shown to be involved in the attachment and connection with the intracellular motor responsible for the active process of invasion. A polyclonal antiserum raised against the recombinant NcMIC2-like1 functional core (thrombospondin and integrin domains) recognized the native form of NcMIC2-like1, inhibited the in vitro invasion process and localized NcMIC2-like1 at the apical complex of the parasite by confocal immunofluorescence, indicating its micronemal localization. The new molecule, NcMIC2-like1, has features that differentiates it from NcMIC2 in a substantial way to be considered a homologue dagger.
Resumo:
To identify novel cytokine-related genes, we searched the set of 60,770 annotated RIKEN mouse cDNA clones (FANTOM2 clones), using keywords such as cytokine itself or cytokine names (such as interferon, interleukin, epidermal growth factor, fibroblast growth factor, and transforming growth factor). This search produced 108 known cytokines and cytokine-related products such as cytokine receptors, cytokine-associated genes, or their products (enhancers, accessory proteins, cytokine-induced genes). We found 15 clusters of FANTOM2 clones that are candidates for novel cytokine-related genes. These encoded products with strong sequence similarity to guanylate-binding protein (GBP-5), interleukin-1 receptor-associated kinase 2 (IRAK-2), interleukin 20 receptor alpha isoform 3, a member of the interferon-inducible proteins of the Ifi 200 cluster, four members of the membrane-associated family 1-8 of interferon-inducible proteins, one p27-like protein, and a hypothetical protein containing a Toll/Interleukin receptor domain. All four clones representing novel candidates of gene products from the family contain a novel highly conserved cross-species domain. Clones similar to growth factor-related products included transforming growth factor beta-inducible early growth response protein 2 (TIEG-2), TGFbeta-induced factor 2, integrin beta-like 1, latent TGF-binding protein 4S, and FGF receptor 4B. We performed a detailed sequence analysis of the candidate novel genes to elucidate their likely functional properties.