996 resultados para adaptation plan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are renewed calls for end-user participation and the integration of local knowledge in agricultural research. In Australia, the response has included an increased emphasis on participatory on-farm research with farmers and commercial agronomists that tests accepted principals to answer practical local farming questions. However, this pursuit of greater relevance has often led to compromises in research designs, unclear results and frustration amongst farmers, commercial agronomists and Research Development and Extension (RDE) agency researchers. This paper reports on a series of pre-season planning workshops from `Doing successful on-farm research', a workshop-based initiative that provides guidelines and a series of interactive activities to plan better participatory on-farm research. The workshop approach helps people design on-farm research that is appropriate to their own needs and local conditions. It assists them to clearly identify their issues, develop specific research questions and decide the best approach to answer those questions with the appropriate rigour for their own situations. These `Doing successful on-farm research' workshops address four potential deficiencies in on-farm research and farming systems RDE more generally in Australia: (1) variable participation of scientists and farmers in on-farm research; (2) the lack of clear guidelines for effective participatory practice and on-farm research; (3) limited support for on-farm research beyond the intensive investigations conducted by RDE agencies and (4) limited support for industry and farmers to contextualise information and research outcomes for specific individual circumstances and faster adaptation of technology. This may be a valuable contribution to balancing the demands for both relevance and rigour in on-farm research in Australia. In "Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the problem of speaker adaptation in speech recognition, the performance depends on the availability of adaptation data. In this paper, we have compared several existing speaker adaptation methods, viz. maximum likelihood linear regression (MLLR), eigenvoice (EV), eigenspace-based MLLR (EMLLR), segmental eigenvoice (SEV) and hierarchical eigenvoice (HEV) based methods. We also develop a new method by modifying the existing HEV method for achieving further performance improvement in a limited available data scenario. In the sense of availability of adaptation data, the new modified HEV (MHEV) method is shown to perform better than all the existing methods throughout the range of operation except the case of MLLR at the availability of more adaptation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Better understanding of root system structure and function is critical to crop improvement in water-limited environments. The aims of this study were to examine root system characteristics of two wheat genotypes contrasting in tolerance to water limitation and to assess the functional implications on adaptation to water-limited environments of any differences found. The drought tolerant barley variety, Mackay, was also included to allow inter-species comparison. Single plants were grown in large, soil-filled root-observation chambers. Root growth was monitored by digital imaging and water extraction was measured. Root architecture differed markedly among the genotypes. The drought-tolerant wheat (cv. SeriM82) had a compact root system, while roots of barley cv. Mackay occupied the largest soil volume. Relative to the standard wheat variety (Hartog), SeriM82 had a more uniform rooting pattern and greater root length at depth. Despite the more compact root architecture of SeriM82, total water extracted did not differ between wheat genotypes. To quantify the value of these adaptive traits, a simulation analysis was conducted with the cropping system model APSIM, for a wide range of environments in southern Queensland, Australia. The analysis indicated a mean relative yield benefit of 14.5% in water-deficit seasons. Each additional millimetre of water extracted during grain filling generated an extra 55 kg ha-1 of grain yield. The functional implications of root traits on temporal patterns and total amount of water capture, and their importance in crop adaptation to specific water-limited environments, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This publication is first in a series targeted for Coordinators and Managers within Benefits Planning, Assistance and Outreach Programs concerned with developing continuous quality improvement approaches. This early publication focuses on understanding strategies for market position, strategic planning and provides a tool for conducting an organizational self-assessment along with a stakeholder analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report summarises data from a large number of trials of species with potential for use by the plantation forest industry in north-eastern Australia and provides information aimed at improving the understanding of growth rates, pest and disease risks and carbon sequestration. Data is summarised and presented at a regional level as opposed to individual trial or plot level. As well, nutritional impediments to tree growth and impacts on forest health are also reported. This report is intended to contribute to policy deliberations about developing forestry opportunities that can that can be integrated into the landscape, with particular consideration given to lower rainfall regions. There are several examples in north-eastern Australia where production forests have developed sub-optimally; this has often been due to poor selection of tree species as little information has been available. This report helps address this deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A contingency plan for exotic Liriomyza leafminers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project uses participatory methods to engage primary producers and advisers in central Queensland, southern Queensland, and north east New South Wales on-farm trials and demonstrations to adapt mixed farming systems to changed climate conditions. The focus is adaptation to climate change but will support abatement of greenhouse gas emissions by building soil carbon, better managing soil nitrogen and soil organic carbon. Data will be collected and integrated with data from Round 1 of the Climate Change Research Program to extend industry understanding beyond a general awareness of ‘climate change’. Nitrous oxide and soil carbon data will help farmers/advisers understand the implications of climate change and develop adaptation strategies for a more sustainable, climate sensitive future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrating biodiversity conservation into forest management in non-industrial private forests requires changes in the practices of those public and private actors that have implementing responsibilities and whose strategic and operational opportunities are at stake. Understanding this kind of context-dependent institutional adaptation requires bridging between two analytical approaches: policy implementation and organizational adaptation, backed up with empirical analysis. The empirical analyses recapitulated in this thesis summary address organizational competences, specialization, professional judgment, and organizational networks. The analyses utilize qualitative and quantitative data from public and private sector organizations as well as associations. The empirical analyses produced stronger signals of policy implementation than of organizational adaptation. The organizations recognized the policy and social demand for integrating biodiversity conservation into forest management and their professionals were in favor of conserving biodiversity. However, conservation was integrated to forest management so tightly that it could be said to be subsumed by mainstream forestry. The organizations had developed some competences for conservation but the competences did not differentiate among the organizations other than illustrating the functional differences between industry, administration and associations. The networks that organizations depended on consisted of traditional forestry actors and peers both in planning policy and at the operational level. The results show that he demand for biodiversity conservation has triggered incremental changes in organizations. They can be considered inert regarding this challenge. Isomorphism is advanced by hierarchical guidance and standardization, and by professional norms. Analytically, this thesis contributes to the understanding of organizational behavior across the public and private sector boundaries. The combination of a policy implementation approach inherent in analysis of public policies in hierarchical administration settings, and organizational adaptation typically applied to private sector organizations, highlights the importance of institutional interpretation. Institutional interpretation serves the understanding of the empirically identified diversions from the basic tenets of the two approaches. Attention to institutions allows identification of the overlap of the traditionally segregated approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acquiring sufficient information on the genetic variation, genetic differentiation, and the ecological and genetic relationships among individuals and populations are essential for establishing guidelines on conservation and utilization of the genetic resources of a species, and more particularly when biotic and abiotic stresses are considered. The aim of this study was to assess the extent and pattern of genetic variation in date palm (Phoenix dacttylifera L) cultivars; the genetic diversity and structure in its populations occurring over geographical ranges; the variation in economically and botanically important traits of it and the variation in its drought adaptive traits, in conservation and utilization context. In this study, the genetic diversity and relationships among selected cultivars from Sudan and Morocco were assessed using microsatellite markers. Microsatellite markers were also used to investigate the genetic diversity within and among populations collected from different geographic locations in Sudan. In a separate investigation, fruits of cultivars selected from Sudan, involved morphological and chemical characterization, and morphological and DNA polymorphism of the mother trees were also investigated. Morphological and photosynthetic adjustments to water stress were studied in the five most important date palm cultivars in Sudan, namely, Gondaila, Barakawi, Bitamoda, Khateeb and Laggai; and the mechanism enhancing photosynthetic gas exchange in date palm under water stress was also investigated. Results showed a significant (p < 0.001, t-test) differentiation between Sudan and Morocco groups of cultivars. However, the major feature of all tested cultivars was the complete lack of clustering and the absence of cultivars representing specific clones. The results indicated high genetic as well as compositional and morphological diversity among cultivars; while, compositional and morphological traits were found to be characteristic features that strongly differentiate cultivars as well as phenotypes. High genetic diversity was observed also in different populations. Slight but significant (p < 0.01, AMOVA) divergence was observed for soft and dry types; however, the genetic divergence among populations was relatively weak. The results showed a complex genetic relationships between some of the tested populations especially when isolation by distance was considered. The results of the study also revealed that date palm cultivars and phenotypes possess specific direct or interaction effects due to water availability on a range of morphological and physiological traits. Soft and dry phenotypes responded differently to different levels of water stress, while the dry phenotype was more sensitive and conservative. The results indicated that date palm has high fixation capacity to photosynthetic CO2 supply with interaction effect to water availability, which can be considered as advantageous when coping with stresses that may arise with climate change. In conclusion, although a large amount of diversity exists among date palm germplasm, the findings in this study show that the role of biological nature of the tree, isolation by distance and environmental effects on structuring date palm genome was highly influenced by human impacts. Identity of date palm cultivars as developed and manipulated by date palm growers, in the absence of scientific breeding programmes, may continue to mainly depend on tree morphology and fruit characters. The pattern of genetic differentiation may cover specific morphological and physiological traits that contribute to adaptive mechanisms in each phenotype. These traits can be considered for further studies related to drought adaptation in date palm.