966 resultados para ab initio
Resumo:
We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.
Resumo:
By performing at) initio density functional theory (DFT) calculations and electronic transport simulations based on the OFT nonequilibrium Green`s functions method we investigate how the conformational changes of a benzene-1,4-dithiol molecule bonded to gold affect the molecular transport as the electrodes are separated from each other. In particular we consider the full evolution of the stretching process until the Junction breaking point and compare results obtained with a standard semilocal exchange and correlation functional to those computed with a self-interaction corrected method. We conclude that the inclusion of self-interaction corrections is fundamental for describing both the molecule conductance and its stability against conformational fluctuations.
Resumo:
Here we present a parametrized tight-binding (TB) model to calculate the band structure of single-wall carbon nanotubes (SWNTs). On the basis of ab initio calculations we fit the band structure of nanotubes of different radii with results obtained with an orthogonal TB model to third neighbors, which includes the effects of orbital hybridization by means of a reduced set of parameters. The functional form for the dependence of these parameters on the radius of the tubes can be used to interpolate appropriate TB parameters for different SWNTs and to study the effects of curvature on their electronic properties. Additionally, we have shown that the model gives an appropriate description of the optical spectra of SWNTs, which can be useful for a proper assignation of SWNTs` specific chirality from optical absorption experiments.
Resumo:
The quadrupolar hyperfine interactions of in-diffused (111)In -> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms. The effects of the size of the supercell and relaxation around the oversized In and Cd probe atoms were investigated in detail.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We present our theoretical results for the structural, electronic, vibrational and optical properties of MO(2) (M = Sn, Zr, Hf and Ti) obtained by first-principles calculations. Relativistic effects are demonstrated to be important for a realistic description of the detailed structure of the electronic frequency-dependent dielectric function, as well as of the carrier effective masses. Based on our results, we found that the main contribution of the high values calculated for the oxides dielectric constants arises from the vibrational properties of these oxides, and the vibrational static dielectric constant values diminish with increasing pressure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ab initio calculations based on the density functional theory (DFT) are used to investigate the electronic and optical properties of sillimanite. The geometrical parameters of the unit cell, which contain 32 atoms, have been fully optimized and are in good agreement with the experimental data. The electronic structure shows that sillimanite has an indirect band gap of 5.18 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of sillimanite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s, Si-3s states play the major role in optical transitions as initial and final states, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.
Resumo:
The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Structural and thermodynamic stabilities of monomers and dimers of trialkylphosphine oxides (TRPO) were Studied using quantum chemistry calculations. Density functional theory calculations were carried Out and the structures Of four TRPO have been determined: TMPO (methyl; R = CH(3)), TEPO (ethyl; R = CH(3)CH(2)), TBPO (n-butyl; R = CH(3)(CH(2))(3)), and TOPO (n-octyl; R = CH(3)(CH(2))(7)). TRPO homodimers were investigated considering two isomeric possibilities for each dimer. Relative binding energies and the enthalpic and entropic contributions to the Gibbs free energy were Calculated for all dimers. The formation of dimers from the individual monomeric TRPO species as a function of temperature was also analyzed. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 109: 250-258, 2009
Resumo:
The conformational features of three 2-sulphur-substituted cyclohexanone derivatives, which differ in the number of sulphur-bound oxygen atoms, i.e. zero (I), one (II) and two (III), were investigated by single crystal X-ray crystallography and geometry optimized structures determined using Hartree-Fock method. In each of (I)-(III) an intramolecular S center dot center dot center dot O(carbonyl) interaction is found with the magnitude correlated with the oxidation state of the sulphur atom, i.e. 2.838(3) angstrom in (I) to 2.924(2) angstrom in (II) to 3.0973(18) angstrom in (III). There is an inverse relationship between the strength of this interaction and the magnitude of the carbonyl bond. The supramolecular aggregation patterns are primarily determined by C-H center dot center dot center dot O contacts and are similarly influenced by the number of oxygen atoms in the molecular structures. Thus, a supramolecular chain is found in the crystal structure of (I). With an additional oxygen atom available to participate in C-H center dot center dot center dot O interactions, as in (II), a two-dimensional array is found. Finally, a three-dimensional network is found for (III). Despite there being differences in conformations between the experimental structures and those calculated in the gas-phase, the S center dot center dot center dot O interactions persist. The presence of intermolecular C-H center dot center dot center dot O interactions involving the cyclohexanone-carbonyl group in the solid-state, disrupts the stabilising intramolecular C-H center dot center dot center dot O interaction in the energetically-favoured conformation. (I): C(12)H(13)NO(3)S, triclinic space group P (1) over bar with a = 5.392(3) angstrom b = 10.731(6) angstrom, c = 11.075(6) angstrom, alpha = 113.424(4)degrees, beta = 94.167(9)degrees, gamma = 98.444(6)degrees, V = 575.5(6) angstrom(3), Z = 2, R(1) = 0.052; (II): C(12)H(13)NO(4)S, monoclinic P2(1)/n, a = 7.3506(15) angstrom, b = 6.7814(14) angstrom, c = 23.479(5) angstrom, beta = 92.94(3)degrees, V = 1168.8(4) angstrom(3), Z = 4, R(1) = 0.046; (III): C(12)H(13)NO(5)S, monoclinic P2(1)/c, a = 5.5491(11) angstrom, b = 24.146(3) angstrom, c = 11.124(3) angstrom, beta = 114.590(10)degrees, V = 1355.3(5) angstrom(3), Z = 4, R(1) = 0.051.
Resumo:
The kinetics of hydrolysis of 1,8-N-butyl-naphthalimide (1,8-NBN) to 1,8-N-butyl-naphthalamide (1,8-NBAmide) and of 2,3-N-butyl-naphthalimide (2,3-NBN) to 2,3-N-butyl-naphthalamide (2,3-NBAmide), as well as the formation of the respective anhydrides from the amides were investigated in a wide acidity range. 1,8-NBN equilibrates with 1,8-NBAmide in mild alkali. Under the same conditions 2,3-NBN quantitatively yields 2,3-NBAmide. Over a wide range of acidities the reactions of the 1,8- and 2,3-N-butyl-naphthalamides (or imides) yield similar products but with widely different rates and at distinct pH`s. Anhydride formation in acid was demonstrated for 1,8-NBAmide. The reactions mechanisms were rationalized in the manifold pathways of ab initio calculations. The differences in rates and pH ranges in the reactions of the 1,8- and 2,3-N-butyl-naphthalamides were attributed to differences in the stability of the tetrahedral intermediates in alkali as well as the relative stabilities of the five and six-membered ring intermediates. The rate of carboxylic acid assisted 1,8-N-Butyl-naphthalamide hydrolysis is one of the largest described for amide hydrolysis models. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal