913 resultados para Weighted graph matching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to Ljungqvist and Sargent (1998), high European unemployment since the 1980s can be explained by a rise in economic turbulence, leading to greater numbers of unemployed workers with obsolete skills. These workers refuse new jobs due to high unemployment benefits. In this paper we reassess the turbulence-unemployment relationship using a matching model with endogenous job destruction. In our model, higher turbulence reduces the incentives of employed workers to leave their jobs. If turbulence has only a tiny effect on the skills of workers experiencing endogenous separation, then the results of Lungqvist and Sargent (1998, 2004) are reversed, and higher turbulence leads to a reduction in unemployment. Thus, changes in turbulence cannot provide an explanation for European unemployment that reconciles the incentives of both unemployed and employed workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To suppress the noise, by sacrificing some of the signal homogeneity for numerical stability, in uniform T1 weighted (T1w) images obtained with the magnetization prepared 2 rapid gradient echoes sequence (MP2RAGE) and to compare the clinical utility of these robust T1w images against the uniform T1w images. MATERIALS AND METHODS: 8 healthy subjects (29.0±4.1 years; 6 Male), who provided written consent, underwent two scan sessions within a 24 hour period on a 7T head-only scanner. The uniform and robust T1w image volumes were calculated inline on the scanner. Two experienced radiologists qualitatively rated the images for: general image quality; 7T specific artefacts; and, local structure definition. Voxel-based and volume-based morphometry packages were used to compare the segmentation quality between the uniform and robust images. Statistical differences were evaluated by using a positive sided Wilcoxon rank test. RESULTS: The robust image suppresses background noise inside and outside the skull. The inhomogeneity introduced was ranked as mild. The robust image was significantly ranked higher than the uniform image for both observers (observer 1/2, p-value = 0.0006/0.0004). In particular, an improved delineation of the pituitary gland, cerebellar lobes was observed in the robust versus uniform T1w image. The reproducibility of the segmentation results between repeat scans improved (p-value = 0.0004) from an average volumetric difference across structures of ≈6.6% to ≈2.4% for the uniform image and robust T1w image respectively. CONCLUSIONS: The robust T1w image enables MP2RAGE to produce, clinically familiar T1w images, in addition to T1 maps, which can be readily used in uniform morphometry packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper generalizes the original random matching model of money byKiyotaki and Wright (1989) (KW) in two aspects: first, the economy ischaracterized by an arbitrary distribution of agents who specialize in producing aparticular consumption good; and second, these agents have preferences suchthat they want to consume any good with some probability. The resultsdepend crucially on the size of the fraction of producers of each goodand the probability with which different agents want to consume eachgood. KW and other related models are shown to be parameterizations ofthis more general one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fixed design regression model, additional weights areconsidered for the Nadaraya--Watson and Gasser--M\"uller kernel estimators.We study their asymptotic behavior and the relationships between new andclassical estimators. For a simple family of weights, and considering theIMSE as global loss criterion, we show some possible theoretical advantages.An empirical study illustrates the performance of the weighted estimatorsin finite samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the problem of matching heterogeneous agents in aBayesian learning model. One agent gives a noisy signal to another agent,who is responsible for learning. If production has a strong informationalcomponent, a phase of cross-matching occurs, so that agents of low knowledgecatch up with those of higher one. It is shown that:(i) a greater informational component in production makes cross-matchingmore likely;(ii) as the new technology is mastered, production becomes relatively morephysical and less informational;(iii) a greater dispersion of the ability to learn and transfer informationmakes self-matching more likely; and(iv) self-matching leads to more self-matching, whereas cross-matching canmake less productive agents overtake more productive ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper establishes a general framework for metric scaling of any distance measure between individuals based on a rectangular individuals-by-variables data matrix. The method allows visualization of both individuals and variables as well as preserving all the good properties of principal axis methods such as principal components and correspondence analysis, based on the singular-value decomposition, including the decomposition of variance into components along principal axes which provide the numerical diagnostics known as contributions. The idea is inspired from the chi-square distance in correspondence analysis which weights each coordinate by an amount calculated from the margins of the data table. In weighted metric multidimensional scaling (WMDS) we allow these weights to be unknown parameters which are estimated from the data to maximize the fit to the original distances. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing a matrix and displaying its rows and columns in biplots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains the divergent behavior of European an US unemploymentrates using a job market matching model of the labor market with aninteraction between shocks an institutions. It shows that a reduction inTF growth rates, an increase in real interest rates, and an increase intax rates leads to a permanent increase in unemployment rates when thereplacement rates or initial tax rates are high, while no increase inunemployment occurs when institutions are "employment friendly". The paperalso shows that an increase in turbulence, modelle as an increase probabilityof skill loss, is not a robust explanation for the European unemploymentpuzzle in the context of a matching model with both endogenous job creationand job estruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper theoretically and empirically documents a puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, either sticky wages or match-specific productivity shocks can improve the model's performance by making the firm's flow of surplus more procyclical, which makes hiring more procyclical too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a two-sided matching model to analyze collaboration between heterogeneousacademics and firms. We predict a positive assortative matching in terms of both scientificability and affinity for type of research, but negative assortative in terms of ability on one sideand affinity in the other. In addition, the most able and most applied academics and the mostable and most basic firms shall collaborate rather than stay independent. Our predictionsreceive strong support from the analysis of the teams of academics and firms that proposeresearch projects to the UK's Engineering and Physical Sciences Research Council.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.