950 resultados para Unmanned Aerial System (UAS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the process of design and development of an autonomous Multi-UAV System, two main problems appear. The first one is the difficulty of designing all the modules and behaviors of the aerial multi-robot system. The second one is the difficulty of having an autonomous prototype of the system for the developers that allows to test the performance of each module even in an early stage of the project. These two problems motivate this paper. A multipurpose system architecture for autonomous multi-UAV platforms is presented. This versatile system architecture can be used by the system designers as a template when developing their own systems. The proposed system architecture is general enough to be used in a wide range of applications, as demonstrated in the paper. This system architecture aims to be a reference for all designers. Additionally, to allow for the fast prototyping of autonomous multi-aerial systems, an Open Source framework based on the previously defined system architecture is introduced. It allows developers to have a flight proven multi-aerial system ready to use, so that they can test their algorithms even in an early stage of the project. The implementation of this framework, introduced in the paper with the name of “CVG Quadrotor Swarm”, which has also the advantages of being modular and compatible with different aerial platforms, can be found at https://​github.​com/​Vision4UAV/​cvg_​quadrotor_​swarm with a consistent catalog of available modules. The good performance of this framework is demonstrated in the paper by choosing a basic instance of it and carrying out simulation and experimental tests whose results are summarized and discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O uso de veículos aéreos não tripulados (VANTs) tem se tornado cada vez mais comum, principalmente em aplicações de uso civil. No cenário militar, o uso de VANTs tem focado o cumprimento de missões específicas que podem ser divididas em duas grandes categorias: sensoriamento remoto e transporte de material de emprego militar. Este trabalho se concentra na categoria do sensoriamento remoto. O trabalho foca a definição de um modelo e uma arquitetura de referência para o desenvolvimento de sensores inteligentes orientados a missões específicas. O principal objetivo destas missões é a geração de mapas temáticos. Neste trabalho são investigados processos e mecanismos que possibilitem a geração desta categoria de mapas. Neste sentido, o conceito de MOSA (Mission Oriented Sensor Array) é proposto e modelado. Como estudos de caso dos conceitos apresentados são propostos dois sistemas de mapeamento automático de fontes sonoras, um para o caso civil e outro para o caso militar. Essas fontes podem ter origem no ruído gerado por grandes animais (inclusive humanos), por motores de combustão interna de veículos ou por atividade de artilharia (incluindo caçadores). Os MOSAs modelados para esta aplicação são baseados na integração de dados provenientes de um sensor de imageamento termal e uma rede de sensores acústicos em solo. A integração das informações de posicionamento providas pelos sensores utilizados, em uma base cartográfica única, é um dos aspectos importantes tratados neste trabalho. As principais contribuições do trabalho são a proposta de sistemas MOSA, incluindo conceitos, modelos, arquitetura e a implementação de referência representada pelo sistema de mapeamento automático de fontes sonoras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to extend the guidance functionalities of Commercial Off-The-Shelf autopilots currently available for Unmanned Aircraft Systems (UAS). Providing that most autopilots only support elemental waypoint-based guidance, this technique allows the aircraft to follow leg-based flight plans without needing to modify the internal control algorithms of the autopilot. It is discussed how to provide Direct to Fix, Track to Fix and Hold to Fix path terminators (along with Fly-Over and Fly-By waypoints) to basic autopilots able to natively execute only a limited set of legs. Preliminary results show the feasibility of the proposal with flight simulations that used a flexible and reconfigurable UAS architecture specifically designed to avoid dependencies with a single or particular autopilot solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sense and avoid capability is one of the greatest challenges that has to be addressed to safely integrate unmanned aircraft systems into civil and nonsegregated airspace. This paper gives a review of existing regulations, recommended practices, and standards in sense and avoid for unmanned aircraft systems. Gaps and issues are identified, as are the different factors that are likely to affect actual sense and avoid requirements. It is found that the operational environment (flight altitude, meteorological conditions, and class of airspace) plays an important role when determining the type of flying hazards that the unmanned aircraft system might encounter. In addition, the automation level and the data-link architecture of the unmanned aircraft system are key factors that will definitely determine the sense and avoid system requirements. Tactical unmanned aircraft, performing similar missions to general aviation, are found to be the most challenging systems from an sense and avoid point of view, and further research and development efforts are still needed before their seamless integration into nonsegregated airspace

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il seguente elaborato di tesi tratta il problema della pianificazione di voli fotogrammetrici a bassa quota mediante l’uso di SAPR, in particolare è presentata una disamina delle principali applicazioni che permettono di programmare una copertura fotogrammetrica trasversale e longitudinale di un certo poligono con un drone commerciale. Il tema principale sviluppato è la gestione di un volo fotogrammetrico UAV mediante l’uso di applicativi software che permettono all’utente di inserire i parametri di volo in base alla tipologia di rilievo che vuole effettuare. L’obbiettivo finale è quello di ottenere una corretta presa fotogrammetrica da utilizzare per la creazione di un modello digitale del terreno o di un oggetto attraverso elaborazione dati in post-processing. La perfetta configurazione del volo non può prescindere dalle conoscenze base di fotogrammetria e delle meccaniche di un veicolo UAV. I capitoli introduttivi tratteranno infatti i principi della fotogrammetria analogica e digitale soffermandosi su temi utili alla comprensione delle problematiche relative al progetto di rilievo fotogrammetrico aereo. Una particolare attenzione è stata posta sulle nozioni di fotogrammetria digitale che, insieme agli algoritmi di Imagine Matching derivanti dalla Computer Vision, permette di definire il ramo della Fotogrammetria Moderna. Nei capitoli centrali verranno esaminate e confrontate una serie di applicazioni commerciali per smartphone e tablet, disponibili per sistemi Apple e Android, per trarne un breve resoconto conclusivo che le compari in termini di accessibilità, potenzialità e destinazione d’uso. Per una maggiore comprensione si determinano univocamente gli acronimi con cui i droni vengono chiamati nei diversi contesti: UAV (Unmanned Aerial Vehicle), SAPR (Sistemi Aeromobili a Pilotaggio Remoto), RPAS (Remotely Piloted Aicraft System), ARP (Aeromobili a Pilotaggio Remoto).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os veículos aéreos não tripulados, mais conhecidos por drones, têm tomado atualmente uma posição importante na sociedade. Para além da sua importância no meio militar, têm sido cada vez mais utilizados para meios comerciais uma vez que o seu custo é relativamente baixo e podem ser utilizados para inúmeras aplicações. Devido à sua importância em missões de salvamento, reconhecimento de terreno e até mesmo de ataque, é fundamental uma boa comunicação entre a aeronave e a estação terrestre. Sendo a antena um dos principais elementos do sistema de comunicação, esta dissertação centrou-se no desenvolvimento de uma agregado de antenas a operar à frequência de 2.45GHz. Pretende-se que este agregado apresente polarização circular direita bem como um ganho e largura de banda elevados. Com o objetivo de se obter uma comunicação mais eficiente entre a aeronave e a estação terrestre, o agregado permitirá o redirecionamento do feixe principal do diagrama de radiação. Para tal, serão analisadas três abordagens distintas recorrendo a linhas de atraso e switches, permitindo que seja efetuado beamforming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past few decades have witnessed the widespread adaptation of wireless devices such as cellular phones and Wifi-connected laptops, and demand for wireless communication is expected to continue to increase. Though radio frequency (RF) communication has traditionally dominated in this application space, recent decades have seen an increasing interest in the use of optical wireless (OW) communication to supplement RF communications. In contrast to RF communication technology, OW systems offer the use of largely unregulated electromagnetic spectrum and large bandwidths for communication. They also offer the potential to be highly secure against jamming and eavesdropping. Interest in OW has become especially keen in light of the maturation of light-emitting diode (LED) technology. This maturation, and the consequent emerging ubiquity of LED technology in lighting systems, has motivated the exploration of LEDs for wireless communication purposes in a wide variety of applications. Recent interest in this field has largely focused on the potential for indoor local area networks (LANs) to be realized with increasingly common LED-based lighting systems. We envision the use of LED-based OW to serve as a supplement to RF technology in communication between mobile platforms, which may include automobiles, robots, or unmanned aerial vehicles (UAVs). OW technology may be especially useful in what are known as RF-denied environments, in which RF communication may be prohibited or undesirable. The use of OW in these settings presents major challenges. In contrast to many RF systems, OWsystems that operate at ranges beyond a few meters typically require relatively precise alignment. For example, some laser-based optical wireless communication systems require alignment precision to within small fractions of a degree. This level of alignment precision can be difficult to maintain between mobile platforms. Additionally, the use of OW systems in outdoor settings presents the challenge of interference from ambient light, which can be much brighter than any LED transmitter. This thesis addresses these challenges to the use of LED-based communication between mobile platforms. We propose and analyze a dual-link LED-based system that uses one link with a wide transmission beam and relaxed alignment constraints to support a more narrow, precisely aligned, higher-data-rate link. The use of an optical link with relaxed alignment constraints to support the alignment of a more precisely aligned link motivates our exploration of a panoramic imaging receiver for estimating the range and bearing of neighboring nodes. The precision of such a system is analyzed and an experimental system is realized. Finally, we present an experimental prototype of a self-aligning LED-based link.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portugal tem uma das maiores Zonas Económicas Exclusivas a nível mundial, encerrando este espaço marítimo uma riqueza que ainda não se encontra devidamente aferida, mas que se julga ser enorme. Por ela passam anualmente milhares de navios, com os mais diversos destinos e transportando as mais variadas cargas. A posição geostratégica do país coloca-o no centro de algumas das mais movimentadas rotas marítimas, sendo por isso de extrema importância vigiar e monitorizar as águas portuguesas, por forma a garantir que as leis e regulamentos de direito internacional marítimo são cumpridos e que o interesse nacional é devidamente salvaguardado. Deste modo, a presente dissertação tem como objeto de estudo os sistemas de vigilância e monitorização marítimos, pretendendo constituir-se como um contributo para a melhoria do atual sistema de vigilância e monitorização dos espaços marítimos sob soberania ou jurisdição portuguesa, focando-se, para tal, nos sistemas aéreos e espaciais para a deteção de meios de superfície. Para tal, numa primeira parte considera-se estudar o ambiente marítimo e as ameaças que o afetam. Na segunda parte estudam-se os atuais sistemas que contribuem para o conhecimento situacional marítimo em Portugal culminando na terceira parte com o estudo dos meios e sensores que permitem melhorar a cobertura do espaço marítimo, com o objetivo final de garantir a segurança no mar. Através do estudo realizado foi possível concluir-se que as aeronaves não tripuladas afiguram-se como o futuro mais imediato para o esclarecimento do panorama marítimo, sendo que os satélites surgem numa segunda linha, pois apesar dos seus custos mais elevados, poderão também dar um enorme contributo para o conhecimento situacional marítimo ao serem capazes de cobrir maiores áreas e mais rapidamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos dias de hoje, com o contínuo desenvolvimento e inovação no campo dos UAVs (Unmanned Aerial Vehciles), o mundo já tem como adquiridos os benefícios que estes sistemas podem fornecer. Os benefícios obtidos com a aplicação destes sistemas abrange tanto as forças armadas como industrias e organizações civis. Todas as nações e indústrias querem ter uma cota parte no futuro desta tecnologia. Diferentes UAVs foram desenvolvidos, mas estes, diferem em termos de arquitetura e protocolos de comunicação. Protocolos como o STANAG 4586, MAVLink, JAUS e ROS são só alguns exemplos. A proliferação de informação através destes sistemas e as suas consolas de comando e controlo é uma das principais preocupações, principalmente pelas forças armadas. Uma das principais prioridades é combinar forças de diferentes nações, principalmente pelos membros NATO. A necessidade de uma consola para cada tipo de sistema devido à falta de padronização apresenta assim um problema. É conhecida a necessidade de uma padronização em termos de arquitetura por camadas e de comunicação tendo em vista a interoperabilidade entre estes sistemas. Não existe nenhuma que esteja a ser implementada como documento padrão. Pretende-se que o STANAG 4586 seja o documento padrão para os membros NATO e, por conseguinte, todos os esforços estão direcionados em desenvolver sistemas que o consigam implementar. Os diferentes UAVs já existentes possuem o seu próprio protocolo de comunicação e a alteração de toda a sua estrutura não é fácil. A ideia de fazer uma conversão de linguagens como alternativa surge como uma solução teórica ótima. Utilizando um piloto automático que comunica com a sua consola através da linguagem MAVLink esta dissertação tem como objetivo desenvolver um programa computacional que converta as mensagens MAVLink em STANAG 4586 e estudar se o tempo de conversão é operacionalmente válido tendo em conta os requisitos operacionais dos sistemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.