914 resultados para Tuneable micro- and nano-periodic structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is to theoretically investigate shockwave and microbubble formation due to laser absorption by microparticles and nanoparticles. The initial motivation for this research was to understand the underlying physical mechanisms responsible for laser damage to the retina, as well as the predict threshold levels for damage for laser pulses with of progressively shorter durations. The strongest absorbers in the retina are micron size melanosomes, and their absorption of laser light causes them to accrue very high energy density. I theoretically investigate how this absorbed energy is transferred to the surrounding medium. For a wide range of conditions I calculate shockwave generation and bubble growth as a function of the three parameters; fluence, pulse duration and pulse shape. In order to develop a rigorous physical treatment, the governing equations for the behavior of an absorber and for the surrounding medium are derived. Shockwave theory is investigated and the conclusion is that a shock pressure explanation is likely to be the underlying physical cause of retinal damage at threshold fluences for sub-nanosecond pulses. The same effects are also expected for non-biological micro and nano absorbers. ^

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (<5mm) and mesoplastic debris were widely and uniformly distributed in this area with average concentrations of 130,000 parts/km(2) and 5700 parts/km(2), respectively. Importantly, a strong correlation between micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73 %) followed by thin films (14 %). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texto completo em atas de encontros científicos internacionais com arbitragem

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: One of the most common strategies for pain control during and after surgical procedures is the use of local anesthetics. Prolonged analgesia can be safely achieved with drug delivery systems suitably chosen for each local anesthetic agent.Areas covered: This review considers drug delivery formulations of local anesthetics designed to prolong the anesthetic effect and decrease toxicity. The topics comprise the main drug delivery carrier systems (liposomes, biopolymers, and cyclodextrins) for infiltrative administration of local anesthetics. A chronological review of the literature is presented, including details of formulations as well as the advantages and pitfalls of each carrier system. The review also highlights pharmacokinetic data on such formulations, and gives an overview of the clinical studies published so far concerning pain control in medicine and dentistry.Expert opinion: The design of novel drug delivery systems for local anesthetics must focus on how to achieve higher uploads of the anesthetic into the carrier, and how to sustain its release. This comprehensive review should be useful to provide the reader with the current state-of-art regarding drug delivery formulations for local anesthetics and their possible clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes arithmetic and geometric Paasche quality-adjusted price indexes that combine micro data from the base period with macro data on the averages of asset prices and characteristics at the index period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the dawn of its presence on earth, the human being has been able to exploit the enzymes for its subsistence. More recent is the meeting between the enzymatic processes and the urgent need for technologies that aim to preserve our planet. In this field nowadays enzymatic catalysis is tested either to depollution/remediation as well as waste disposal. The work presented in this thesis, regarding both these two topics, is tailored on two European projects (EU 2020), MADFORWATER and TERMINUS respectively. Firstly, production of micro- and nanocatalysts via immobilization of laccases (a lignin-degrader enzyme) is performed. In the second part of the thesis laccase is applied to a tertiary treatment of wastewater with the aim to degrade 9 pharmaceutical active compounds in batch reactors. Despite several optimizations, poor degradation is reached and we did not proceed with the study of different bioreactor setups. Therefore, the focus is moved to a project concerning the production of smart multi-layer plastic packaging containing enzymes to improve the possibilities of recycling. In this field shielded nanocatalysts produced via coating techniques able to interact with redox mediators are investigated. The target substrate in this second project is produced in laboratory (i.e. polyurethane like compounds), starting from monomers whose degradation had already been tested, as a proof of concept. The first enzyme studied is still the laccase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of non-neuronal brain cells, called astrocytes, is emerging as crucial in brain function and dysfunction, encompassing the neurocentric concept that was envisioning glia as passive components. Ion and water channels and calcium signalling, expressed in functional micro and nano domains, underpin astrocytes’ homeostatic function, synaptic transmission, neurovascular coupling acting either locally and globally. In this respect, a major issue arises on the mechanism through which astrocytes can control processes across scales. Finally, astrocytes can sense and react to extracellular stimuli such as chemical, physical, mechanical, electrical, photonic ones at the nanoscale. Given their emerging importance and their sensing properties, my PhD research program had the general goal to validate nanomaterials, interfaces and devices approaches that were developed ad-hoc to study astrocytes. The results achieved are reported in the form of collection of papers. Specifically, we demonstrated that i) electrospun nanofibers made of polycaprolactone and polyaniline conductive composites can shape primary astrocytes’ morphology, without affecting their function ii) gold coated silicon nanowires devices enable extracellular recording of unprecedented slow wave in primary differentiated astrocytes iii) colloidal hydrotalcites films allow to get insight in cell volume regulation process in differentiated astrocytes and to describe novel cytoskeletal actin dynamics iv) gold nanoclusters represent nanoprobe to trigger astrocytes structure and function v) nanopillars of photoexcitable organic polymer are potential tool to achieve nanoscale photostimulation of astrocytes. The results were achieved by a multidisciplinary team working with national and international collaborators that are listed and acknowledged in the text. Collectively, the results showed that astrocytes represent a novel opportunity and target for Nanoscience, and that Nanoglial interface might help to unveil clues on brain function or represent novel therapeutic approach to treat brain dysfunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro di Tesi ha voluto fornire una panoramica sui dispositivi a rilascio controllato presenti nella letteratura scientifica, e dei materiali, in particolare poliesteri alifatici, principalmente impiegati a tale scopo. Particolare attenzione è stata dedicata anche alle tipologie di somministrazione e alle patologie che attualmente possono essere curate con tali dispositivi al fine di effettuare un rilascio di principio attivo in maniera mirata, controllata, e ottimizzata in relazione alla specifica terapia, al fine di migliorare quanto più possibile la compliance del paziente. In ultima istanza, sono stati riportati alcuni casi studio, relativi a sistemi copolimerici e materiali ibridi realizzati dal gruppo di ricerca della Prof.ssa Lotti, relatrice del presente elaborato, che da anni studia e realizza materiali polimerici innovativi per applicazioni biomedicali, quali ingegneria tissutale e rilascio controllato di farmaci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological fixation between the dental implant surfaces and jaw bones should be considered a prerequisite for the long-term success of implant-supported prostheses. In this context, the implant surface modifications gained an important and decisive place in implant research over the last years. As the most investigated topic in, it aided the development of enhanced dental treatment modalities and the expansion of dental implant use. Nowadays, a large number of implant types with a great variety of surface properties and other features are commercially available and have to be treated with caution. Although surface modifications have been shown to enhance osseointegration at early implantation times, for example, the clinician should look for research evidence before selecting a dental implant for a specific use. This paper reviews the literature on dental implant surfaces by assessing in vitro and in vivo studies to show the current perspective of implant development. The review comprises quantitative and qualitative results on the analysis of bone-implant interface using micro and nano implant surface topographies. Furthermore, the perspective of incorporating biomimetic molecules (e.g.: peptides and bone morphogenetic proteins) to the implant surface and their effects on bone formation and remodeling around implants are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações