915 resultados para Traffic oscillations
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.
Resumo:
With increasing motorisation, road safety has become a major concern within Oman. Internationally, traffic policing plays a major role in improving road safety. Within Oman, the Royal Oman Police's (ROP) Directorate General of Traffic is responsible for policing traffic laws. Many common enforcement approaches originate from culturally different jurisdictions. The ROP is a relatively young policing force and may have different operational practices. Prior to applying practices from other jurisdictions it is important to understand the beliefs and expectations within the Directorate General of Traffic. Further, there is a need for individuals to understand their role and what is expected of them. Therefore, it is important to explore the agreement between levels of the ROP to determine how strategies and expectations transfer within the organisation. Interviews were conducted with 19 police officers from various levels of the ROP. A number of themes and findings emerged. Individuals at the upper level of the traffic police had a clear knowledge of the role of the ROP, believed that traffic police know what is expected of them, are well trained in their role and can have a very positive influence on road safety. These beliefs were less certain lower within the organisations with traffic officers having little knowledge of the role of the ROP or what was expected of them, felt undertrained, and believed their peers have little positive impact on road safety. There is a need to address barriers within the ROP in order to positively impact road safety.
Resumo:
Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.
Resumo:
Objectives Studies from different parts of the world have indicated that the impact of road traffic incidents disproportionally affects young adults. Few known studies have been forthcoming from Arabian Gulf countries. Within Oman, a high proportion of the population is under the age of 20. Coupled with the drastic increase of motorization in recent years there is a need to understand the state of road safety among young people in Oman. The current research aimed to explore the prevalence and characteristics of road traffic injuries among young drivers aged 17-25 years. Methods Crash data from 2009-2011 was extracted from the Directorate General of Traffic, Royal Oman Police (ROP) database in Oman. The data was analyzed to explore the impact of road crashes on young people (17-25 years), the characteristics of young driver crashes and how these differ from older drivers and to identify key predictors of fatalities in young driver crashes. Results Overall, young people were over-represented in injuries and fatalities within the sample time period. While it is true that many young people in crashes were driving at the time, it was also evident that young people were often a victim in a crash caused by someone else. Thus, to reduce the impact of road crashes on young people, there is a need to generally address road safety within Oman. When young drivers were involved in crashes they were predominantly male. The types of crashes these drivers have can be broadly attributed to risk taking and inexperience. Speeding and night time driving were the key risk factors for fatalities. Conclusion The results highlight the need to address young driver safety in Oman. From these findings, the introduction of a graduated driver licensing system with night time driving restrictions could significantly improve young driver safety.
Resumo:
A common theme in many accounts of road safety and road use in low and middle income countries is a widespread lack of compliance with traffic laws and related legislation. A key element of the success of road crash prevention strategies in high income countries has been the achievement of safer road user behaviour through compliance with traffic laws. Deterrence-based approaches such as speed cameras and random breath testing, which rely on drivers making an assessment that they are likely to be caught if they offend, have been very effective in this regard. However, the long term success of (for example) drink driving legislation has been supported by drivers adopting a moral approach to compliance rather than relying solely on the intensity of police operations. For low and middle income countries such morally based compliance is important, since levels of police resourcing are typically much lower than in Western countries. In the absence of morally based compliance, it is arguable that the patterns of behaviours observed in low and middle income countries can be described as "pragmatic driving": compliance only when there is a high chance of being detected and fined, or where a crash might occur. The potential characteristics of pragmatic driving in the macro-, meso- and micro-context of driving and the enforcement approach that could address it are outlined, with reference to the limited existing information available.
Resumo:
We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.
Resumo:
Travel speed is one of the most critical parameters for road safety; the evidence suggests that increased vehicle speed is associated with higher crash risk and injury severity. Both naturalistic and simulator studies have reported that drivers distracted by a mobile phone select a lower driving speed. Speed decrements have been argued to be a risk compensatory behaviour of distracted drivers. Nonetheless, the extent and circumstances of the speed change among distracted drivers are still not known very well. As such, the primary objective of this study was to investigate patterns of speed variation in relation to contextual factors and distraction. Using the CARRS-Q high-fidelity Advanced Driving Simulator, the speed selection behaviour of 32 drivers aged 18-26 years was examined in two phone conditions: baseline (no phone conversation) and handheld phone operation. The simulator driving route contained five different types of road traffic complexities, including one road section with a horizontal S curve, one horizontal S curve with adjacent traffic, one straight segment of suburban road without traffic, one straight segment of suburban road with traffic interactions, and one road segment in a city environment. Speed deviations from the posted speed limit were analysed using Ward’s Hierarchical Clustering method to identify the effects of road traffic environment and cognitive distraction. The speed deviations along curved road sections formed two different clusters for the two phone conditions, implying that distracted drivers adopt a different strategy for selecting driving speed in a complex driving situation. In particular, distracted drivers selected a lower speed while driving along a horizontal curve. The speed deviation along the city road segment and other straight road segments grouped into a different cluster, and the deviations were not significantly different across phone conditions, suggesting a negligible effect of distraction on speed selection along these road sections. Future research should focus on developing a risk compensation model to explain the relationship between road traffic complexity and distraction.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.
Resumo:
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.
Resumo:
The synchronization of neuronal activity, especially in the beta- (14-30 Hz) /gamma- (30 80 Hz) frequency bands, is thought to provide a means for the integration of anatomically distributed processing and for the formation of transient neuronal assemblies. Thus non-stimulus locked (i.e. induced) gamma-band oscillations are believed to underlie feature binding and the formation of neuronal object representations. On the other hand, the functional roles of neuronal oscillations in slower theta- (4 8 Hz) and alpha- (8 14 Hz) frequency bands remain controversial. In addition, early stimulus-locked activity has been largely ignored, as it is believed to reflect merely the physical properties of sensory stimuli. With human neuromagnetic recordings, both the functional roles of gamma- and alpha-band oscillations and the significance of early stimulus-locked activity in neuronal processing were examined in this thesis. Study I of this thesis shows that even the stimulus-locked (evoked) gamma oscillations were sensitive to high-level stimulus features for speech and non-speech sounds, suggesting that they may underlie the formation of early neuronal object representations for stimuli with a behavioural relevance. Study II shows that neuronal processing for consciously perceived and unperceived stimuli differed as early as 30 ms after stimulus onset. This study also showed that the alpha band oscillations selectively correlated with conscious perception. Study III, in turn, shows that prestimulus alpha-band oscillations influence the subsequent detection and processing of sensory stimuli. Further, in Study IV, we asked whether phase synchronization between distinct frequency bands is present in cortical circuits. This study revealed prominent task-sensitive phase synchrony between alpha and beta/gamma oscillations. Finally, the implications of Studies II, III, and IV to the broader scientific context are analysed in the last study of this thesis (V). I suggest, in this thesis that neuronal processing may be extremely fast and that the evoked response is important for cognitive processes. I also propose that alpha oscillations define the global neuronal workspace of perception, action, and consciousness and, further, that cross-frequency synchronization is required for the integration of neuronal object representations into global neuronal workspace.
Resumo:
Road traffic accidents are a large problem everywhere in the world. However, regional differences in traffic safety between countries are considerable. For example, traffic safety records are much worse in Southern Europe and the Middle East than in Northern and Western Europe. Despite the large regional differences in traffic safety, factors contributing to different accident risk figures in different countries and regions have remained largely unstudied. The general aim of this study was to investigate regional differences in traffic safety between Southern European/Middle Eastern (i.e., Greece, Iran, Turkey) and Northern/Western European (i.e., Finland, Great Britain, The Netherlands) countries and to identify factors related to these differences. We conducted seven sub-studies in which I applied a traffic culture framework, including a multi-level approach, to traffic safety. We used aggregated level data (national statistics), surveys among drivers, and data on traffic accidents and fatalities in the analyses. In the first study, we investigated the influence of macro level factors (i.e., economic, societal, and cultural) on traffic safety across countries. The results showed that a high GNP per capita and conservatism correlated with a low number of traffic fatalities, whereas a high degree of uncertainty avoidance, neuroticism, and egalitarianism correlated with a high number of traffic fatalities. In the second, third, and fourth studies, we examined whether the conceptualisation of road user characteristics (i.e., driver behaviour and performance) varied across traffic cultures and how these factors determined overall safety, and the differences between countries in traffic safety. The results showed that the factorial agreement for driver behaviour (i.e., aggressive driving) and performance (i.e., safety skills) was unsatisfactory in Greece, Iran, and Turkey, where the lack of social tolerance and interpersonal aggressive violations seem to be important characteristics of driving. In addition, we found that driver behaviour (i.e., aggressive violations and errors) mediated the relationship between culture/country and accidents. Besides, drivers from "dangerous" Southern European countries and Iran scored higher on aggressive violations and errors than did drivers from "safe" Northern European countries. However, "speeding" appeared to be a "pan-cultural" problem in traffic. Similarly, aggressive driving seems largely depend on road users' interactions and drivers' interpretation (i.e., cognitive biases) of the behaviour of others in every country involved in the study. Moreover, in all countries, a risky general driving style was mostly related to being young and male. The results of the fifth and sixth studies showed that among young Turkish drivers, gender stereotypes (i.e., masculinity and femininity) greatly influence driver behaviour and performance. Feminine drivers were safety-oriented whereas masculine drivers were skill-oriented and risky drivers. Since everyday driving tasks involve not only erroneous (i.e., risky or dangerous driving) or correct performance (i.e., normal habitual driving), but also "positive" driver behaviours, we developed a reliable scale for measuring "positive" driver behaviours among Turkish drivers in the seventh study. Consequently, I revised Reason's model [Reason, J. T., 1990. Human error. Cambridge University Press: New York] of aberrant driver behaviour to represent a general driving style, including all possible intentional behaviours in traffic while evaluating the differences between countries in traffic safety. The results emphasise the importance of economic, societal and cultural factors, general driving style and skills, which are related to exposure, cognitive biases as well as age, sex, and gender, in differences between countries in traffic safety.
Resumo:
Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.
Resumo:
Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.