960 resultados para Tip-enhanced Raman scattering
Resumo:
We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.
Resumo:
By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
Glasses having the composition (100 - x)As2P2S8-xGa(2)S(3) with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (T-g) and the stability parameter against crystallization (T-x - T-g) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and P-31 nuclear magnetic resonance. On the basis of the observed vibrations and the strength of the P-31-P-31 homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x <= 20% we may have the formation of GaS4E- groups (E = nonbonding electron), and for x >= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS4/2 unit (Q(4)) species carrying a single positive formal charge.
Resumo:
Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.
Resumo:
Unexpectedly, the Fano resonance caused by the interference of continuum electron excitations with the longitudinal optical (LO) phonons was observed in random porous Si by Raman scattering. The analysis of the experimental data shows that the electron states trapped at the Si-SiO(2) interface dominate in the observed Raman scattering. The gap energy associated with the interface states was determined. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A new occurrence of rankamaite is here described at the Urubu pegmatite, Itinga municipality, Minas Gerais, Brazil. The mineral forms cream-white botryoidal aggregates of acicular to fibrous crystals, intimately associated with simpsonite, thoreaulite, cassiterite, quartz, elbaite, albite, and muscovite. The average of six chemical analyses obtained by electron microprobe is (range in parentheses, wt%): Na(2)O 2.08 (1.95-2.13), K(2)O 2.61 (2.52-2.74), Al(2)O(3) 1.96 (1.89-2.00), Fe(2)O(3) 0.01 (0.00-0.03), TiO(2) 0.02 (0.00-0.06), Ta(2)O(5) 81.04 (79.12-85.18), Nb(2)O(5) 9.49 (8.58-9.86), total 97.21 (95.95-101.50). The chemical formula derived from this analysis is (Na(1.55)K(1.28))(Sigma 2.83)(Ta(8.45)Nb(1.64)Al(0.89)Fe(0.01)(3+)Ti(0.01))(Sigma 11.00)[O(25.02)(OH)(5.98)](Sigma 31.00). Rankamaite is an orthorhombic ""tungsten bronze"" (OTB), crystallizing in the space group Cmmm. Its unit-cell parameters refined from X-ray diffraction powder data are: a = 17.224(3), b = 17.687(3), c = 3.9361(7) angstrom, V = 1199.1(3) angstrom(3), Z = 2. Rietveld refinement of the powder data was undertaken using the structure of LaTa(5)O(14) as a starting model for the rankamaite structure. The structural formula obtained with the Rietveld analyses is: (Na(2.21)K(1.26))Sigma(3.37)(Ta(9.12)NB(1.30) Al(0.59))(Sigma 11.00)[O(26.29)(OH)(4.71)](Sigma 31.00). The tantalum atoms are coordinated by six and seven oxygen atoms in the form of distorted TaO(6) octahedra and TaO(2) pentagonal bipyramids, respectively. Every pentagonal bipyramid shares edges with four octahedra, thus forming Ta(5)O(14) units. The potassium atom is in an 11-fold coordination, whereas one sodium atom is in a 10-fold and the other is in a 12-fold coordination. Raman and infrared spectroscopy were used to investigate the room-temperature spectra of rankamaite.
Resumo:
Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of adding SO(2) on the structure and dynamics of 1-butyl-3-methylimidazolium bromide (BMIBr) was investigated by low-frequency Raman spectroscopy and molecular dynamics (MD) simulations. The MD simulations indicate that the long-range structure of neat BMIBr is disrupted resulting in a liquid with relatively low viscosity and high conductivity, but strong correlation of ionic motion persists in the BMIBr-SO(2) mixture due to ionic pairing. Raman spectra within the 5 < omega < 200 cm(-1) range at low temperature reveal the short-time dynamics, which is consistent with the vibrational density of states calculated by MD simulations. Several time correlation functions calculated by MD simulations give further insights on the structural relaxation of BMIBr-SO(2).
Resumo:
In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.
Resumo:
Lead iodide thin films were fabricated using the spray pyrolysis technique. Milli-Q water and N.N-dimethylformamide were used as solvents under varying deposition conditions. Films as thick as 60 mu m were obtained. The optical and structural properties of the samples were investigated using Photoluminescence, Raman scattering, X-ray diffraction, and Scanning electron microscopy. In addition, the study included also the electronic properties which were investigated by measuring the dark conductivity as a function of temperature. The deposition technique seems to be promising for the development of thick films to be used in medical imaging.
Resumo:
Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Blend films of poly (o-ethoxyaniline) (POEA) and collagen were fabricated by casting under optimized conditions and characterized by Raman scattering and UV-vis absorption spectroscopies. The UV-vis spectra showed that the addition of collagen in the aqueous solution of POEA promotes a dedoping of the POEA. This effect was also observed for the blend films as supported by Raman scattering and a mechanism for the chemical interaction between POEA-collagen is proposed. The influences of different percentage of collagen as well as the pH of stock solutions during the fabrication process of the blend films were also investigated. It was found that the preparation method plays an important role in the flexibility and freestanding properties of the films. Complementary, the surface morphology was studied by atomic force microscopy and the conductivity by dc measurements. (C) 2003 Elsevier Ltd. All rights reserved.