874 resultados para Time-varying variable selection
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Aims. We investigate the time-varying patterns in line profiles, V/R, and radial velocity of the Be star HD 173948 (lambda Pavonis). Methods. Time series analyses of radial velocity, V/R, and line profiles of He I, Fe II, and Si II were performed with the Cleanest algorithm. An estimate of the stellar rotation frequency was derived from the stellar mass and radius in the Roche limit by adopting an aspect angle i derived from the fittings of non-LTE model spectra affected by rotation. The projected rotation velocity, necessary as input for the spectral synthesis procedure, was evaluated from the Fourier transform of the rotation profiles of all neutral helium lines in the optical range. Results. Emission episodes in Balmer and He i lines, as well as V/R cyclic variations, are reported for spectra observed in year 1999, followed by a relatively quiescent phase (2000) and then again a new active epoch (2001). From time series analyses of line profiles, radial velocities, and V/R ratios, four signals with high confidence levels are detected: nu(1) = 0.17 +/- 0.02, nu(2) = 0.49 +/- 0.05, nu(3) = 0.82 +/- 0.03, and nu(4) = 1.63 +/- 0.04 c/d. We interpret nu 4 as a non-radial pulsation g-mode, nu 3 as a signal related to the orbital timescale of ejected material, which is near the theoretical rotation frequency 0.81 c/d inferred from the fitting of the models taken into account for gravity darkening. The signals nu(1) and nu(2) are viewed as aliases of nu(3) and nu(4).
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an extended impedance-based fault-location formulation for generalized distribution systems is presented. The majority of distribution feeders are characterized by having several laterals, nonsymmetrical lines, highly unbalanced operation, and time-varying loads. These characteristics compromise traditional fault-location methods performance. The proposed method uses only local voltages and currents as input data. The current load profile is obtained through these measurements. The formulation considers load variation effects and different fault types. Results are obtained from numerical simulations by using a real distribution system from the Electrical Energy Distribution State Company of Rio Grande do Sul (CEEE-D), Southern Brazil. Comparative results show the technique robustness with respect to fault type and traditional fault-location problems, such as fault distance, resistance, inception angle, and load variation. The formulation was implemented as embedded software and is currently used at CEEE-D`s distribution operation center.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
The time varying intensity character of a load applied to a structure poses many difficulties in analysis. A remedy to this situation is to substitute a complex pulse shape by a rectangular equivalent one. It has been shown by others that this procedure works well for perfectly plastic elementary structures. This paper applies the concept of equivalent pulse to more complex structures. Special attention is given to the material behavior, which is allowed to be strain rate and strain hardening sensitive. Thanks to the explicit finite element solution, it is shown in this article that blast loads applied to complex structures made of real materials can be substituted by equivalent rectangular loads with both responses being practically the same. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present a novel array RLS algorithm with forgetting factor that circumvents the problem of fading regularization, inherent to the standard exponentially-weighted RLS, by allowing for time-varying regularization matrices with generic structure. Simulations in finite precision show the algorithm`s superiority as compared to alternative algorithms in the context of adaptive beamforming.
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.
Resumo:
The detection of seizure in the newborn is a critical aspect of neurological research. Current automatic detection techniques are difficult to assess due to the problems associated with acquiring and labelling newborn electroencephalogram (EEG) data. A realistic model for newborn EEG would allow confident development, assessment and comparison of these detection techniques. This paper presents a model for newborn EEG that accounts for its self-similar and non-stationary nature. The model consists of background and seizure sub-models. The newborn EEG background model is based on the short-time power spectrum with a time-varying power law. The relationship between the fractal dimension and the power law of a power spectrum is utilized for accurate estimation of the short-time power law exponent. The newborn EEG seizure model is based on a well-known time-frequency signal model. This model addresses all significant time-frequency characteristics of newborn EEG seizure which include; multiple components or harmonics, piecewise linear instantaneous frequency laws and harmonic amplitude modulation. Estimates of the parameters of both models are shown to be random and are modelled using the data from a total of 500 background epochs and 204 seizure epochs. The newborn EEG background and seizure models are validated against real newborn EEG data using the correlation coefficient. The results show that the output of the proposed models has a higher correlation with real newborn EEG than currently accepted models (a 10% and 38% improvement for background and seizure models, respectively).
Resumo:
The performance of three different techniques for determining proton rotating frame relaxation rates (T1pH) in charred and uncharred woods is compared. The variable contact time (VCT) experiment is shown to over-estimate T1pH, particularly for the charred samples, due to the presence of slowly cross-polarizing C-13 nuclei. The variable spin (VSL) or delayed contact experiment is shown to overcome these problems; however, care is needed in the analysis to ensure rapidly relaxing components are not overlooked. T1pH is shown to be non-uniform for both charred and uncharred wood samples; a rapidly relaxing component (T1pH = 0.46-1.07 ms) and a slowly relaxing component (T1pH = 3.58-7.49) is detected in each sample. T1pH for each component generally decreases with heating temperature (degree of charring) and the proportion of rapidly relaxing component increases. Direct T1pH determination (via H-1 detection) shows that all samples contain an even faster relaxing component (0.09-0.24 ms) that is virtually undetectable by the indirect (VCT and VSL) techniques. A new method for correcting for T1pH signal losses in spin counting experiments is developed to deal with the rapidly relaxing component detected in the VSL experiment. Implementation of this correction increased the proportion of potential C-13 CPMAS NMR signal that can be accounted for by up to 50% for the charred samples. An even greater proportion of potential signal can be accounted for if the very rapidly relaxing component detected in the direct T1pH determination is included; however, it must be kept in mind that this experiment also detects H-1 pools which may not be involved in H-1-C-13 cross-polarization. (C) 2002 Elsevier Science (USA).
Resumo:
Background. Many resource-limited countries rely on clinical and immunological monitoring without routine virological monitoring for human immunodeficiency virus (HIV)-infected children receiving highly active antiretroviral therapy (HAART). We assessed whether HIV load had independent predictive value in the presence of immunological and clinical data for the occurrence of new World Health Organization (WHO) stage 3 or 4 events (hereafter, WHO events) among HIV-infected children receiving HAART in Latin America. Methods. The NISDI (Eunice Kennedy Shriver National Institute of Child Health and Human Development International Site Development Initiative) Pediatric Protocol is an observational cohort study designed to describe HIV-related outcomes among infected children. Eligibility criteria for this analysis included perinatal infection, age ! 15 years, and continuous HAART for >= 6 months. Cox proportional hazards modeling was used to assess time to new WHO events as a function of immunological status, viral load, hemoglobin level, and potential confounding variables; laboratory tests repeated during the study were treated as time-varying predictors. Results. The mean duration of follow-up was 2.5 years; new WHO events occurred in 92 (15.8%) of 584 children. In proportional hazards modeling, most recent viral load 15000 copies/mL was associated with a nearly doubled risk of developing a WHO event (adjusted hazard ratio, 1.81; 95% confidence interval, 1.05-3.11; P = 033), even after adjustment for immunological status defined on the basis of CD4 T lymphocyte value, hemoglobin level, age, and body mass index. Conclusions. Routine virological monitoring using the WHO virological failure threshold of 5000 copies/mL adds independent predictive value to immunological and clinical assessments for identification of children receiving HAART who are at risk for significant HIV-related illness. To provide optimal care, periodic virological monitoring should be considered for all settings that provide HAART to children.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization.
Resumo:
When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.
Resumo:
A simple method is provided for calculating transport rates of not too fine (d(50) greater than or equal to 0.20 mm) sand under sheet flow conditions. The method consists of a Meyer-Peter-type transport formula operating on a time-varying Shields parameter, which accounts for both acceleration-asymmetry and boundary layer streaming. While velocity moment formulae, e.g.., = Constant x calibrated against U-tube measurements, fail spectacularly under some real waves (Ribberink, J.S., Dohmen-Janssen, C.M., Hanes, D.M., McLean, S.R., Vincent, C., 2000. Near-bed sand transport mechanisms under waves. Proc. 27th Int. Conf. Coastal Engineering, Sydney, ASCE, New York, pp. 3263-3276, Fig. 12), the new method predicts the real wave observations equally well. The reason that the velocity moment formulae fail under these waves is partly the presence of boundary layer streaming and partly the saw-tooth asymmetry, i.e., the front of the waves being steeper than the back. Waves with saw-tooth asymmetry may generate a net landward sediment transport even if = 0, because of the more abrupt acceleration under the steep front. More abrupt accelerations are associated with thinner boundary layers and greater pressure gradients for a given velocity magnitude. The two real wave effects are incorporated in a model of the form Q(s)(t) = Q(s)[theta(t)] rather than Q(S)(t) = Q(S)[u(infinity)(t)], i.e., by expressing the transport rate in terms of an instantaneous Shields parameter rather than in terms of the free stream velocity, and accounting for both streaming and accelerations in the 0(t) calculations. The instantaneous friction velocities u(*)(t) and subsequently theta(t) are calculated as follows. Firstly, a linear filter incorporating the grain roughness friction factor f(2.5) and a phase angle phi(tau) is applied to u(infinity)(t). This delivers u(*)(t) which is used to calculate an instantaneous grain roughness Shields parameter theta(2.5)(t). Secondly, a constant bed shear stress is added which corresponds to the streaming related bed shear stress -rho ($) over bar((u) over tilde(w) over tilde)(infinity) . The method can be applied to any u(infinity)(t) time series, but further experimental validation is recommended before application to conditions that differ strongly from the ones considered below. The method is not recommended for rippled beds or for sheet flow with typical prototype wave periods and d(50) < 0.20 turn. In such scenarios, time lags related to vertical sediment movement become important, and these are not considered by the present model. (C) 2002 Elsevier Science B.V. All rights reserved.