981 resultados para Thyroid Hormone Receptors beta
Resumo:
Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Through these pathways, PPARs can regulate cell proliferation, differentiation and survival, so controlling carcinogenesis in various tissues. But what are the links between each PPAR isotype and carcinogenesis and what is the relevance of these findings to human pathology and therapy?
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors controlling the expression of genes involved in lipid homeostasis. PPARs activate gene transcription in response to a variety of compounds including hypolipidemic drugs as well as natural fatty acids. From the plethora of PPAR activators, Scatchard analysis of receptor-ligand interactions has thus far identified only four ligands. These are the chemotactic agent leukotriene B4 and the hypolipidemic drug Wy 14,643 for the alpha-subtype and a prostaglandin J2 metabolite and synthetic antidiabetic thiazolidinediones for the gamma-subtype. Based on the hypothesis that ligand binding to PPAR would induce interactions of the receptor with transcriptional coactivators, we have developed a novel ligand sensor assay, termed coactivator-dependent receptor ligand assay (CARLA). With CARLA we have screened several natural and synthetic candidate ligands and have identified naturally occurring fatty acids and metabolites as well as hypolipidemic drugs as bona fide ligands of the three PPAR subtypes from Xenopus laevis. Our results suggest that PPARs, by their ability to interact with a number of structurally diverse compounds, have acquired unique ligand-binding properties among the superfamily of nuclear receptors that are compatible with their biological activity.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily implicated in adipocyte differentiation. The observations that PPAR alpha is a regulator of hepatic lipid metabolism and that the insulin-sensitizing thiazolidinediones are ligands for PPAR gamma suggest that cross-talk might exist between insulin signaling and PPAR activity, possibly through insulin-induced PPAR phosphorylation. Immunoprecipitation of endogenous PPAR alpha from primary rat adipocytes prelabeled with [32P]-orthophosphate and pretreated for 2 h with vanadate and okadaic acid demonstrated for the first time that PPAR alpha is a phosphoprotein in vivo. Treatment with insulin induced a time-dependent increase in PPAR phosphorylation showing a 3-fold increase after 30 min. Insulin also increased the phosphorylation of human PPAR alpha expressed in CV-1 cells. These changes in phosphorylation were paralleled by enhanced transcriptional activity of PPAR alpha and gamma. Transfection studies in CV-1 cells and HepG2 cells revealed a nearly 2-fold increase of PPAR activity in the presence of insulin. In contrast, insulin had no effect on the transcriptional activity of transfected thyroid hormone receptor in CV-1 cells, suggesting a PPAR-specific effect. Thus, insulin stimulates PPAR alpha phosphorylation and enhances the transcriptional activity of PPAR, suggesting that the transcriptional activity of this nuclear hormone receptor might be modulated by insulin-mediated phosphorylation.
Resumo:
Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.
Resumo:
The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.
Resumo:
Thyroid hormones, which play an important role in the development and regeneration of the nervous system, require the presence of specific nuclear T3 receptors (NT3R). In this study we provide evidence that NT3R expression by Schwann cells was up-regulated in response to a loss of axonal contact in vitro and in vivo. In dorsal root ganglia explant cultures, Schwann cells which accompanied axons (nerve fibres) were devoid of NT3R. When Schwann cells were orphaned from axon contact by axon transection, all the nuclei of these cells displayed NT3R immunoreactivity. Similar results were obtained in situ; in adult rat sciatic nerve, Schwann cells which ensheathed healthy axons never expressed NT3R immunoreactivity. After sciatic nerve transection in vivo the nuclei of Schwann cells deprived of axonal contact displayed a clear NT3R immunoreaction.
Resumo:
The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids.
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
The objective of this study was to evaluate the plasma concentrations of insulin-like growth factor-I (IGF-I), and the mRNA hepatic expression of IGF-I and of the growth hormone receptors GHR and GHR 1A, in postpartum beef cows. Four Angus and four crossbred (Angus x Nelore) postpartum suckled beef cows were used. Liver and blood samples were collected every 10 days, from calving to 40 days postpartum, for gene expression and for β-hydroxybutyrate and IGF-I assays, respectively. Samples for progesterone assay were collected every other day, from day 10 to 40 postpartum. Three cows ovulated before 40 days postpartum. IGF-I concentration was higher in Angus x Nelore than in Angus cows. There was no difference in the expression of GHR, GHR 1A and IGF-I according to breed or ovulatory status. IGF-I concentrations were higher in crossbred cows, but have not changed according to postpartum ovulatory status. Moreover, changes in postpartum IGF-I concentrations are not associated with changes in liver GHR, GHR 1A and IGF-I mRNA expression in either breed.
Resumo:
Aldosterone stimulates transepithelial Na+ transport in the toad bladder, and thyroid hormone antagonizes this mineralocorticoid action. In the present study, we assessed the influence of these two hormones on the biosynthesis of (Na+,K+)ATPase, the major driving force of Na+ transport. Rates of enzyme synthesis were estimated by immunoprecipitation with monospecific alpha (96,000 daltons) and beta (60,000 daltons) subunit antibodies. After a 30-min pulse of intact tissue with [35S]methionine, the anti-alpha-serum recognized the 96,000-dalton alpha subunit and the anti-beta-serum, a 42,000-dalton protein, in total cell extracts. The biosynthesis rates of both these proteins were increased 2.8- and 2.4-fold respectively, over controls by 80 nM aldosterone after 18 h of hormone treatment. The hormonal effect was not apparent up to 3 h of incubation and was dose dependent between 0.2 and 20 nM aldosterone. The hormonal induction was antagonized by spironolactone (500-fold excess) but not by amiloride. The action of aldosterone thus seems to be a receptor-mediated process and a primary event independent of the Na+ permeability of the apical membrane. Thyroid hormone, on the other hand, had no effect on either basal or aldosterone-stimulated synthesis rates of both enzyme proteins. The results demonstrate a direct effect of aldosterone on gene expression of the (Na+,K+)-ATPase. Ultimately, this phenomenon could be linked to the late mineralocorticoid action of this hormone. On the other hand, thyroid hormone, in contrast to the situation in mammals, does not stimulate de novo enzyme synthesis in amphibia. Neither can the antimineralocorticoid action of thyroid hormone in the toad bladder be explained by an inhibition of the (Na+,K+)-ATPase synthesis.
Resumo:
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erba) rescues Nr2e3- associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
Resumo:
There is little information on the possible effects of estrogen on the activity of 5'-deiodinase (5'-ID), an enzyme responsible for the generation of T3, the biologically active thyroid hormone. In the present study, anterior pituitary sonicates or hepatic and thyroid microsomes from ovariectomized (OVX) rats treated or not with estradiol benzoate (EB, 0.7 or 14 µg/100 g body weight, sc, for 10 days) were assayed for type I 5'-ID (5'-ID-I) and type II 5'-ID (5'-ID-II, only in pituitary) activities. The 5'-ID activity was evaluated by the release of 125I from deiodinated 125I rT3, using specific assay conditions for type I or type II. Serum TSH and free T3 and free T4 were measured by radioimmunoassay. OVX alone induced a reduction in pituitary 5'-ID-I (control = 723.7 ± 67.9 vs OVX = 413.9 ± 26.9; P<0.05), while the EB-treated OVX group showed activity similar to that of the normal group. Thyroid 5'-ID-I showed the same pattern of changes, but these changes were not statistically significant. Pituitary and hepatic 5'-ID-II did not show major alterations. The treatment with the higher EB dose (14 µg), contrary to the results obtained with the lower dose, had no effect on the reduced pituitary 5'-ID-I of OVX rats. However, it induced an important increment of 5'-ID-I in the thyroid gland (0.8 times higher than that of the normal group: control = 131.9 ± 23.7 vs ovx + EB 14 µg = 248.0 ± 31.2; P<0.05), which is associated with increased serum TSH (0.6-fold vs OVX, P<0.05) but normal serum free T3 and free T4. The data suggest that estrogen is a physiological stimulator of anterior pituitary 5'-ID-I and a potent stimulator of the thyroid enzyme when employed at high doses
Resumo:
Estrogen involvement in breast cancer has been established; however, the association between breast cancer and thyroid diseases is controversial. Estrogen-like effects of thyroid hormone on breast cancer cell growth in culture have been reported. The objective of the present study was to determine the profile of thyroid hormones in breast cancer patients. Serum aliquots from 26 patients with breast cancer ranging in age from 30 to 85 years and age-matched normal controls (N = 22) were analyzed for free triiodothyronine (T3F), free thyroxine (T4F), thyroid-stimulating hormone (TSH), antiperoxidase antibody (TPO), and estradiol (E2). Estrogen receptor ß (ERß) was determined in tumor tissues by immunohistochemistry. Thyroid disease incidence was higher in patients than in controls (58 vs 18%, P < 0.05). Subclinical hyperthyroidism was the most frequent disorder in patients (31%); hypothyroidism (8%) and positive anti-TPO antibodies (19%) were also found. Subclinical hypothyroidism was the only dysfunction (18%) found in controls. Hyperthyroidism was associated with postmenopausal patients, as shown by significantly higher mean T3 and T4 values and lower TSH levels in this group of breast cancer patients than in controls. The majority of positive ERß tumors were clustered in the postmenopausal patients and all cases presenting subclinical hyperthyroidism in this subgroup concomitantly exhibited Erß-positive tumors. Subclinical hyperthyroidism was present in only one of 6 premenopausal patients. We show here that postmenopausal breast cancer patients have a significantly increased thyroid hormone/E2 ratio (P < 0.05), suggesting a possible tumor growth-promoting effect caused by this misbalance.
Resumo:
Metabolic syndrome is associated with an increased risk of developing cardiovascular diseases and Plasminogen activator inhibitor 1 (PAI-1) overexpression may play a significant role in this process. A positive correlation between adipose tissue gene expression of PAI-1 and its serum concentration has been reported. Furthermore, high serum levels of thyroid hormones (T3 and T4) and PAI-1 have been observed in obese children. The present study evaluates the impact of thyroid hormone treatment on white adipose tissue PAI-1 gene expression and its serum concentration. Male Wistar rats (60 days old) were treated for three weeks with T4 (50 µg/day, Hyper) or with saline (control). Additionally, 3T3-L1 adipocytes were treated for 24 h with T4 (100 nM) or T3 (100 nM). PAI-1 gene expression was determined by real-time PCR, while the serum concentration of PAI-1 was measured by ELISA using a commercial kit (Innovative Research, USA). Both the serum concentration of PAI-1 and mRNA levels were similar between groups in retroperitoneal and epididymal white adipose tissue. Using 3T3-L1 adipocytes, in vitro treatment with T4 and T3 increased the gene expression of PAI-1, suggesting non-genomic and genomic effects, respectively. These results demonstrate that thyroid hormones have different effects in vitro and in vivo on PAI-1 gene expression in adipocytes.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.