702 resultados para Thermoplastic Polyurethane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothesis: The possibility of tailoring the final properties of environmentally friendly waterborne polyurethane and polyurethane-urea dispersions and the films they produce makes them attractive for a wide range of applications. Both the reagents content and the synthesis route contribute to the observed final properties. Experiments: A series of polyurethane-urea and polyurethane aqueous dispersions were synthesized using 1,2-ethanediamine and/or 1,4-butanediol as chain extenders. The diamine content was varied from 0 to 4.5 wt%. Its addition was carried out either by the classical heterogeneous reaction medium (after phase inversion step), or else by the alternative homogeneous medium (prior to dispersion formation). Dispersions as well as films prepared from dispersions have been later extensively characterized. Findings: 1,2-Ethanediamine addition in heterogeneous medium leads to dispersions with high particle sizes and broad distributions whereas in homogeneous medium, lower particle sizes and narrow distributions were observed, thus leading to higher uniformity and cohesiveness among particles during film formation. Thereby, stress transfer is favored adding the diamine in a homogeneous medium; and thus the obtained films presented quite higher stress and modulus values. Furthermore, the higher uniformity of films tends to hinder water molecules transport through the film, resulting, in general, in a lower water absorption capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a three-dimensional (3D) non-ordinary state-based peridynamics (NOSB-PD) formulation for thermomechanical brittle and ductile fracture is presented. The Johnson–Cook (JC) constitutive and damage model is used to taken into account plastic hardening, thermal softening and fracture. The for- mulation is validated by considering two benchmark examples: 1) The Taylor-bar impact and 2) the Kalthoff– Winkler tests. The results show good agreements between the numerical simulations and the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with other fixation methods in mandibular symphysis fractures. Ten polyurethane mandibles were allocated to each group and fixed as follows: group PRP, 2 perpendicular miniplates; group PLL, 1 miniplate and 1 plate, parallel; and group CS, 2 cannulated screws. Vertical linear loading tests were performed. The differences between mean values were analyzed with the Tukey test. The photoelastic test was carried out using a polariscope. The results revealed differences between the CS and PRP groups at 1, 3, 5, and 10 millimeters of displacement. The photoelastic test confirmed higher stress concentration in all groups close to the mandibular base, whereas the CS group showed it throughout the region assessed. Conical cannulated screws performed well in mechanical and photoelastic tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to compare four methods of fixation in mandibular body fractures. Mechanical and photoelastic tests were performed using polyurethane and photoelastic resin mandibles, respectively. The study groups contained the following: (I), two miniplates of 2.0 mm; (II) one 2.0 mm plate and an Erich arch bar; (III) one 2.4 mm plate and an Erich arch bar, and (IV) one 2.0 mm plate and one 2.4 mm plate. The differences between the mean values were analyzed using Tukey's test, the Mann-Whitney test and the Bonferroni correction. Group II recorded the lowest resistance, followed by groups I, IV and III. The photoelastic test confirmed the increase of tension in group II. The 2.4 mm system board in linear mandibular body fractures provided more resistance and the use of only one 2.0 mm plate in the central area of the mandible created higher tension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To develop Y-shaped plates with different thicknesses to be used in simulated fractures of the mandibular condyle. Ten plates were developed in Y shape, containing eight holes, and 30 synthetic polyurethane mandible replicas were developed for the study. The load test was performed on an Instron Model 4411 universal testing machine, applying load in the mediolateral and anterior-posterior positions on the head of the condyle. Two-way ANOVA with Tukey testing with a 5% significance level was used. It was observed that when the load was applied in the medial-lateral plate of greater thickness (1.5 mm), it gave the highest strength, while in the anteroposterior direction, the plate with the highest resistance was of the lesser thickness (0.6 mm). A plate with a thickness of 1.5 mm was the one with the highest average value for all displacements. In the anteroposterior direction, the highest values of resistance were seen in the displacement of 15 mm. After comparing the values of the biomechanical testing found in the scientific literature, it is suggested that the use of Y plates are suitable for use in subcondylar fractures within the limitations of the study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho são investigadas as propriedades mecânicas de poliuretana derivada do óleo de mamona, utilizando a técnica de indentação instrumentada com penetradores de geometrias piramidal e esférica. Foi analisada a influência da forma do penetrador utilizado nos ensaios de indentação instrumentada para se obter valores das propriedades mecânicas de polímero derivado de óleo de mamona. Os penetradores utilizados são de pontas piramidais dos tipos Berkovich e canto de cubo e esférico de raio igual a 150 μm em um Nanoindenter XP TM com cargas aplicadas entre 1 e 200 mN. As penetrações variam de acordo com o formato do penetrador, sendo maiores para pontas agudas. A dureza e o módulo de elasticidade foram determinados, utilizando o método de Oliver e Pharr. Verificou-se que os valores medidos para a dureza são maiores para penetradores mais agudos. Os valores obtidos com a ponta piramidal Berkovich foram de 0,14 GPa para pequenas penetrações e 0,12 GPa para maiores penetrações. Já os valores obtidos com ponta canto de cubo foram 25 a 30% maiores. Isso está relacionado com os volumes das regiões que apresentam deformações plásticas elevadas, no caso de penetradores agudos comparados com os volumes das regiões que sofrem deformações viscoelásticas. A viscosidade aparente determinada, utilizando penetrador esférico em testes de força aplicada constante, é igual a (22 ± 2) × 10(12) Pa.s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study addressed the use of conventional and vegetable origin polyurethane foams to extract C. I. Acid Orange 61 dye. The quantitative determination of the residual dye was carried out with an UV/Vis absorption spectrophotometer. The extraction of the dye was found to depend on various factors such as pH of the solution, foam cell structure, contact time and dye and foam interactions. After 45 days, better results were obtained for conventional foam when compared to vegetable foam. Despite presenting a lower percentage of extraction, vegetable foam is advantageous as it is considered a polymer with biodegradable characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bovine rumen protein with two levels of residual lipids (1.9 per cent or 3.8 per cent) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9 per cent residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8 per cent in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500mg kg(-1)). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layer-by-layer (LBL) assembly was used to combine crystalline rod-like nanoparticles obtained from a vegetable source, cellulose nanowhiskers (CNWs), with collagen, the main component of skin and connective tissue found exclusively in animals. The film growth of the multilayered collagen/CNW was monitored by UV-Vis spectroscopy and ellipsometry measurements, whereas the film morphology and surface roughness were characterized by SEM and AFM. UV-Vis spectra showed the deposition of the same amount of collagen, 5 mg m(-2), in each dipping cycle. Ellipsometry data showed an increment in thickness with the number of layers, and the average thickness of each bilayer was found to be 8.6 nm. The multilayered bio-based nanocomposites were formed by single layers of densely packed CNWs adsorbed on top of each thin collagen layer where the hydrogen bonding between collagen amide groups and OH groups of the CNWs plays a mandatory role in the build-up of the thin films. The approach used in this work represents a potential strategy to mimic the characteristics of natural extracellular matrix (ECM) which can be used for applications in the biomedical field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study on the possible sites of oxidation and epoxidation of nortriptyline was performed using electrochemical and quantum chemical methods; these sites are involved in the biological responses (for example, hepatotoxicity) of nortriptyline and other similar antidepressants. Quantum chemical studies and electrochemical experiments demonstrated that the oxidation and epoxidation sites are located on the apolar region of nortriptyline, which will useful for understanding the molecule`s activity. Also, for the determination of the compound in biological fluids or in pharmaceutical formulations, we propose a useful analytical methodology using a graphite-polyurethane composite electrode, which exhibited the best performance when compared with boron-doped diamond or glassy carbon surfaces.