719 resultados para Testicular echogenicity
Resumo:
The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.
Resumo:
Current theories of sexual differentiation maintain that ovarian estrogen prevents masculine development of the copulatory system in birds, whereas estrogen derived from testicular androgens promotes masculine sexual differentiation of neuroanatomy and sexual behavior in mammals. Paradoxically, some data suggest that the neural song system in zebra finches follows the mammalian pattern with estrogenic metabolites of testicular secretions causing masculine development. To test whether the removal of estrogen from males during early development would prevent the development of masculine song systems, zebra finches were treated embryonically with an inhibitor of estrogen synthesis. In addition, this treatment in genetic female zebra finches induced both functional ovarian and testicular tissue to develop, thus allowing the assessment of the direct effects of testicular secretions on song system development. In males, the inhibition of estrogen synthesis before hatching had a small but significant effect in demasculinizing one aspect of the neural song system. In treated females, the song systems remained morphologically feminine. These results suggest that masculinization of the song system is not determined solely by testicular androgens or their estrogenic metabolites.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Description based on: fiscal year 2007/2008 ; title from cover.
Resumo:
The Testisin gene (PRSS21) encodes a glycosylphosphatidylinositol (GPI)-linked serine protease that exhibits testis tissue-specific expression. Loss of Testisin has been implicated in testicular tumorigenesis, but its role in testis biology and tumorigenesis is not known. Here we have investigated the role of CpG methylation in Testisin gene inactivation and tested the hypothesis that Testisin may act as a tumour suppressor for testicular tumorigenesis. Using sequence analysis of bisulphite-treated genomic DNA, we find a strong relationship between hypermethylation of a 385 bp 50 CpG rich island of the Testisin gene, and silencing of the Testisin gene in a range of human tumour cell lines and in 100% (eight/eight) of testicular germ cell tumours. We show that treatment of Testisin-negative cell lines with demethylating agents and/or a histone deacetylase inhibitor results in reactivation of Testisin gene expression, implicating hypermethylation in Testisin gene silencing. Stable expression of Testisin in the Testisin-negative Tera-2 testicular cancer line suppressed tumorigenicity as revealed by inhibition of both anchorage-dependent cell growth and tumour formation in an SCID mouse model of testicular tumorigenesis. Together, these data show that loss of Testisin is caused, at least in part, by DNA hypermethylation and histone deacetylation, and suggest a tumour suppressor role for Testisin in testicular tumorigenesis.
Resumo:
The objective was to compare testis characteristics of Zebu bulls treated with the GnRH agonist, deslorelin, at different times and for different durations during their development. An additional objective was to determine the usefulness of a stain for the transcription factor GATA-binding protein 4 (GATA-4) as a specific marker for Sertoli cell nuclei in cattle. Bulls (54) were allocated to nine groups (n = 6) and received s.c. deslorelin implants as follows: G1 = from birth to 3 mo of age; G2 = from 3 to 6 mo; G3 = from 6 to 9 mo; G4 = from 9 to 12 mo; G5 = from birth to 15 mo; G6 = from 3 to 15 mo; G7 = from 6 to 15 mo; G8 = from 12 to 15 mo; and G9 (control) = no implant. Bulls were castrated at 19 mo of age. Paraffin sections (10 mu m) were subjected to quantitative morphometry and GATA-4 immunohistochemistry. At castration, all bulls in the control group (6/6) had attained puberty (scrotal circumference ! 28 cm), whereas a smaller proportion (P < 0.05) had reached puberty in G2 (2/5) and G6 (1/ 6). Bulls in G2 and G6 also had a lesser (P < 0.05) testis weight compared with the control group. Total volume of seminiferous epithelium and total daily sperm production in G2 and G6 were only half that observed in the control group. Spermatids were observed in less than 50% of seminiferous tubules in G2, G6, and G7 compared with 82% in the control group (P < 0.05). Staining for GATA-4 was specific for and abundant in the Sertoli cell nucleus in both pre- and postpubertal bulls, and no other cell nucleus inside the seminiferous tubule was positive for GATA-4. Total number of Sertoli cells was not affected by treatment (P = 0.45), but nuclear volume was smaller in G2 and G6 (P < 0.05) compared with the control group. In conclusion, treatment of Zebu bulls with deslorelin had no apparent beneficial effect on testis development and delayed puberty when treatment was initiated at 3 mo of age. Staining for GATA-4 was a useful method for identifying and quantifying Sertoli cell nuclei in both pre- and postpubertal bulls.
Resumo:
The prevalence of tumours of the germ line is increasing in the male population. This complex disease has a complex aetiology. We examine the contribution of genetic mutations to the development of germ line tumours in this review. In particular, we concentrate on fly and mouse experimental systems in order to demonstrate that mutations in some conserved genes cause pathologies typical of certain human germ cell tumours, whereas other mutations elicit phenotypes that are unique to the experimental model. Despite these experimental systems being imperfect, we show that they are useful models of human testicular germ cell tumourigenesis.
Resumo:
The aim of this investigation was to test the hypothesis that testicular germ cell tumors (TGCTs) are hormone-dependent cancers. Human TGCT cells were implanted in the left testis of male severe combined immunodeficient mice receiving either no treatment or hormone manipulation treatment [blockade of gonadotropin-releasing hormone secretion and/or signaling using leuprolide or leuprolide plus exogenous testosterone]. Real-time RT-PCR analysis was used to determine the expression profiles of hormone pathway-associated genes. Tumor burden was significantly smaller in mice receiving both leuprolide and testosterone. Real-time RTPCR analysis of follicle-stimulating hormone (FSH) receptor, luteinizing hormone (LH) receptor and P450 aromatase revealed changes in expression in normal testis tissue related to presence of xenograft tumors and manipulation of hormone levels but a complete absence of expression of these genes in tumor cells themselves. This was confirmed in human specimens of TGCT. Reduced TGCT growth in vivo was associated with significant downregulation of LH receptor and P450 aromatase expression in normal testes. In conclusion, manipulation of hormone levels influenced the growth of TGCT in vivo, while the presence of xenografted tumors influenced the expression of hormone-related genes in otherwise untreated animals. Human TGCTs, both in the animal model and in clinical specimens, appear not to express receptors for FSH or LH. Similarly, expression of the P450 aromatase gene is absent in TGCTs. Impaired estrogen synthesis and/or signaling may be at least partly responsible for inhibition of TGCT growth in the animal model. (c) 2005 Wiley-Liss, Inc.
Resumo:
ARAÚJO, Arrilton ; SOUSA, Maria Bernardete Cordeiro . Testicular volume and reproductive status of Wild Callithrix jacchus. International Journal of Primatology, v.29, p.1355–1364, 2008. DOI 10.1007/s10764-008-9291-4
Resumo:
ARAÚJO, Arrilton ; SOUSA, Maria Bernardete Cordeiro . Testicular volume and reproductive status of Wild Callithrix jacchus. International Journal of Primatology, v.29, p.1355–1364, 2008. DOI 10.1007/s10764-008-9291-4
Resumo:
A cutia (Dasyprocta aguti) é um roedor silvestre encontrado amplamente na região Nordeste do Brasil. É uma espécie muito utilizada pela população humana de baixa renda como fonte alternativa de proteína na alimentação. Foram utilizadas 31 cutias, machos, provenientes da Universidade Federal do Piauí (FUFPI), Estado do Piauí e da Escola Superior de Agricultura de Mossoró Estado do Rio Grande do Norte. Os animais foram divididos em grupos etários desde o nascimento até os 14 meses de idade. O diâmetro nuclear médio foi obtido pela medida de 10 núcleos do tipo celular estudado em cada testículo, no estágio 1 do ciclo do epitélio seminífero. Nos animais que não apresentaram o epitélio organizado em estágios bem definidos em virtude da idade, foram feitas medidas em secções transversais escolhidas somente pelo contorno circular. O início da assincronia do processo espermatogênico foi observado a partir dos seis meses de idade. A puberdade, na cutia Dasyprocta aguti, foi definitivamente estabelecida a partir dos nove meses de idade, pois estavam presentes todos os tipos celulares e espermatozóides liberados no lume tubular em grande parte do parênquima testicular.
Resumo:
Foi estudado, por meio da histometria, o desenvolvimento testicular em 31 cutias da espécie Dasyprocta aguti desde o nascimento até 14 meses de idade. O diâmetro e a área, médios, foram obtidos a partir de 30 secções transversais de cordões e/ou túbulos seminíferos, em cada testículo, utilizando-se sistema de computadorizado de analises de imagem e uma ocular micrométrica Zeiss CPL 10X, acoplada a uma objetiva de 40X. As proporções volumétricas do testículo foram obtidas com o método estereométrico, segundo Elias, Henning e Schwartz¹. O diâmetro tubular médio apresentou crescimento lento desde o nascimento até os oito meses de idade, nas duas metodologias empregadas. Quando foi usada a ocular micrométrica observou-se que, a partir de nove meses, o diâmetro tubular teve um crescimento acelerado, chegando a duplicar o seu valor, se comparado com grupo etário que o antecedia. A proporção volumétrica dos cordões testiculares e túbulos seminíferos cresceu gradualmente, atingindo, aos nove meses, seu valor máximo (86,50%). As células de Leydig apresentaram proporção volumétrica decrescente, e seus maiores valores foram expressivos do nascimento até quatro meses de idade (7,00 ± 1,77% a 9,55 ± 0,64%) e mínimos a partir de nove meses, tendendo ainda a uma estabilização. O estroma diminuiu com a evolução da idade caindo bruscamente a partir da puberdade. Conclui-se que o diâmetro dos cordões testiculares e túbulos seminíferos apresentou maior crescimento, coincidindo com o início da puberdade e a proporção volumétrica das células de Leydig encontrou-se, respectivamente, mais alta e mais baixa no mesmo período.