924 resultados para Teorema de Mayer-Vietoris
Resumo:
Shipping list no.: 97-0286-P.
Resumo:
Let (X, d) be a metric space and CL(X) the family of all nonempty closed subsets of X. We provide a new proof of the fact that the coincidence of the Vietoris and Wijsman topologies induced by the metric d forces X to be a compact space. In the literature only a more involved and indirect proof using the proximal topology is known. Here we do not need this intermediate step. Moreover we prove that (X, d) is boundedly compact if and only if the bounded Vietoris and Wijsman topologies on CL(X) coincide.
Resumo:
This study will present the results of an investigation of how the history of mathematics and theater can contribute to the construction of mathematical knowledge of students in the 9th year of elementary school, through the experience, preparation and execution of a play, beyond presentation of the script. This brings a historical approach, defining space and time of events, putting the reader and viewer to do the route in the biography of Thales of Miletus (624-546 a.C), creating situations that led to the study and discussion of the content related to the episode possible to measure the height of the pyramid Khufu and the Theorem of Thales. That said, the pedagogical proposal implemented in this work was based on theoretical and methodological assumptions of the History of Mathematics and Theatre, drawing upon authors such as Mendes (2006), Miguel (1993), Gutierre (2010), Desgrandes (2011), Cabral (2012). Regarding the methodological procedures used qualitative research because it responds to particular issues, analyzing and interpreting the data generated in the research field. As methodological tools we have used participant observation, the questionnaire given to the students, field diary and dissertativos texts produced by students. The processing and analysis of data collected through the questionnaires were organized, classified and quantified in tables and graphs for easy viewing, interpretation, understanding and analysis of data. Data analysis corroborated our hypothesis and contributed to improving the use and display of the play as a motivating activity in mathematics classrooms. Thus, we consider that the script developed, ie the educational product proposed will bring significant contributions to the teaching of Mathematics in Primary Education
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.
Resumo:
Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.
Resumo:
Vorbesitzer: Freiherrlich Carl von Rothschild'sche Bibliothek Frankfurt am Main; alte Signatur: Hs. in Quart 107
Resumo:
Vorbesitzer: Freiherrlich Carl von Rothschild'sche Bibliothek Frankfurt am Main; Akzessionsnummer: x20230
Resumo:
Vorbesitzer: Freiherrlich Carl von Rothschild'sche Bibliothek Frankfurt am Main; alte Signatur: Hs. in Quart 106
Resumo:
Le th eor eme de Riemann-Roch originale a rme que pour tout morphisme propre f : Y ! X entre vari et es quasi-projectifs lisses sur un corps, et tout el ement a 2 K0(Y ) du groupe de Grothendieck des br es vectoriels on a ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Ici ch est le caract ere de Chern, Td(Tf ) est la classe de Todd du br e tangent relative et f et f! sont les images directes de l'anneau de Chow et K0 respectivement. Apr es, Baum, Fulton et MacPherson ont d emontr e en [BFM75] le th eor eme de Riemann-Roch pour des morphismes localement intersection compl ete entre des sch emas alg ebriques (sch emas s epar es et localement de type ni sur un corps) projectifs et singuli eres. En [FG83] Fulton et Gillet ont d emontr e le th eor eme sans hypoth eses projectifs. L'extension a la th eorie K sup erieure pour des sch emas r eguli eres sur une base fut d emontr e par Gillet en [Gil81]. Le th eor eme de Riemann-Roch qu'il prouve est pour des morphismes projectifs entre des sch emas lisses et quasi-projectifs. Donc, dans le cas des sch emas sur un corps, le r esultat de Gillet n'inclus pas le th eor eme de [BFM75]. La plus grande g en eralisation du th eor eme de Riemann-Roch que je connais est [D eg14] et [HS15], o u D eglise et Holmstrom-Scholbach obtiennent ind ependamment le th eor eme de Riemann- Roch pour la K-th eorie sup erieure et les morphismes projectifs lic entre sch emas r eguli eres sur une base noetherienne de dimension nie... NOTA 520 8 El teorema de Riemann-Roch original de Grothendieck a rma que para todo mor smo propio f : Y ! X, entre variedades irreducibles quasiproyectivas lisas sobre un cuerpo, y todo elemento a 2 K0(Y ) del grupo de Grothendieck de brados vectoriales se satisface la relaci on ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Recu erdese que ch denota el car acter de Chern, Td(Tf ) la clase de Todd del brado tangente relativo y f y f! las im agenes directas en el anillo de Chow y K0 respectivamente. M as tarde Baum, Fulton MacPherson probaron en [BFM75] el teorema de Riemann-Roch para mor smos localmente intersecci on completa entre esquemas algebraicos (es decir, esquemas separados localmente de tipo nito sobre cuerpo) proyectivos singulares. En [FG83] Fulton y Gillet probaron el teorema sin hip otesis proyectivas. La notable extensi on a la teor a K superior para esquemas regulares sobre una base fue probada por Gillet en [Gil81]. El teorema de Riemann-Roch all probado es para mor smos proyectivos entre esquemas lisos quasiproyectivos. Sin embargo, obs ervese que en el caso de esquemas sobre cuerpo el resultado de Gillet no recupera el teorema de [BFM75]. La mayor generalizaci on del teorema de Riemann-Roch que yo conozco es [D eg14] y [HS15] donde D eglise y Holmstrom-Scholbach obtuvieron independientemente el teorema de Riemann-Roch para teor a K superior y mor smos proyectivos lic entre esquemas regulares sobre una base noetheriana nito dimensional...
Hs. Rothschild 4° 104 - Viertes Testament des Mayer Amschel Rothschild aus dem Jahr 1812 (Abschrift)
Resumo:
Vorbesitzer: Freiherrlich Carl von Rothschild'sche Bibliothek Frankfurt am Main; alte Signatur: Hs. in Quart 104; Hs in 4° 104
Hs. Rothschild 4° 105 - Viertes Testament des Mayer Amschel Rothschild aus dem Jahr 1812 (Abschrift)
Resumo:
Vorbesitzer: Freiherrlich Carl von Rothschild'sche Bibliothek Frankfurt am Main; alte Signatur: Hs. in Quart 105; Hs in 4° 105
Resumo:
In questa tesi si presenta il concetto di politopo convesso e se ne forniscono alcuni esempi, poi si introducono alcuni metodi di base e risultati significativi della teoria dei politopi. In particolare si dimostra l'equivalenza tra le due definizioni di H-politopo e di V-politopo, sfruttando il metodo di eliminazione di Fourier-Motzkin per coni. Tutto ciò ha permesso di descrivere, grazie al lemma di Farkas, alcune importanti costruzioni come il cono di recessione e l'omogeneizzazione di un insieme convesso.