239 resultados para Tensioned Tether


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For long enough tethers, the coupling of the attitude and orbital dynamics may show non-negligible effects in the orbital motion of a tethered satellite about a central body. In the case of fast rotating tethers the attitude remains constant, on average, up to second order effects. Besides, for a tether rotating in a plane parallel to the equatorial plane of the central body, the attitude?orbit coupling effect is formally equal to the perturbation of the Keplerian motion produced by the oblateness of the central body and, therefore, may have a stabilizing effect in the orbital dynamics. In the case of a tethered satellite in a low lunar orbit, it is demonstrated that feasible tether lengths can help in modifying the actual map of lunar frozen orbits

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El entorno espacial actual hay un gran numero de micro-meteoritos y basura espacial generada por el hombre, lo cual plantea un riesgo para la seguridad de las operaciones en el espacio. La situación se agrava continuamente a causa de las colisiones de basura espacial en órbita, y los nuevos lanzamientos de satélites. Una parte significativa de esta basura son satélites muertos, y fragmentos de satélites resultantes de explosiones y colisiones de objetos en órbita. La mitigación de este problema se ha convertido en un tema de preocupación prioritario para todas las instituciones que participan en operaciones espaciales. Entre las soluciones existentes, las amarras electrodinámicas (EDT) proporcionan un eficiente dispositivo para el rápido de-orbitado de los satélites en órbita terrestre baja (LEO), al final de su vida útil. El campo de investigación de las amarras electrodinámicas (EDT) ha sido muy fructífero desde los años 70. Gracias a estudios teóricos, y a misiones para la demostración del funcionamiento de las amarras en órbita, esta tecnología se ha desarrollado muy rápidamente en las últimas décadas. Durante este período de investigación, se han identificado y superado múltiples problemas técnicos de diversa índole. Gran parte del funcionamiento básico del sistema EDT depende de su capacidad de supervivencia ante los micro-meteoritos y la basura espacial. Una amarra puede ser cortada completamente por una partícula cuando ésta tiene un diámetro mínimo. En caso de corte debido al impacto de partículas, una amarra en sí misma, podría ser un riesgo para otros satélites en funcionamiento. Por desgracia, tras varias demostraciones en órbita, no se ha podido concluir que este problema sea importante para el funcionamiento del sistema. En esta tesis, se presenta un análisis teórico de la capacidad de supervivencia de las amarras en el espacio. Este estudio demuestra las ventajas de las amarras de sección rectangular (cinta), en cuanto a la probabilidad de supervivencia durante la misión, frente a las amarras convencionales (cables de sección circular). Debido a su particular geometría (longitud mucho mayor que la sección transversal), una amarra puede tener un riesgo relativamente alto de ser cortado por un único impacto con una partícula de pequeñas dimensiones. Un cálculo analítico de la tasa de impactos fatales para una amarra cilindrica y de tipo cinta de igual longitud y masa, considerando el flujo de partículas de basura espacial del modelo ORDEM2000 de la NASA, muestra mayor probabilidad de supervivencia para las cintas. Dicho análisis ha sido comparado con un cálculo numérico empleando los modelos de flujo el ORDEM2000 y el MASTER2005 de ESA. Además se muestra que, para igual tiempo en órbita, una cinta tiene una probabilidad de supervivencia un orden y medio de magnitud mayor que una amarra cilindrica con igual masa y longitud. Por otra parte, de-orbitar una cinta desde una cierta altitud, es mucho más rápido, debido a su mayor perímetro que le permite capturar más corriente. Este es un factor adicional que incrementa la probabilidad de supervivencia de la cinta, al estar menos tiempo expuesta a los posibles impactos de basura espacial. Por este motivo, se puede afirmar finalmente y en sentido práctico, que la capacidad de supervivencia de la cinta es bastante alta, en comparación con la de la amarra cilindrica. El segundo objetivo de este trabajo, consiste en la elaboración de un modelo analítico, mejorando la aproximación del flujo de ORDEM2000 y MASTER2009, que permite calcular con precisión, la tasa de impacto fatal al año para una cinta en un rango de altitudes e inclinaciones, en lugar de unas condiciones particulares. Se obtiene el numero de corte por un cierto tiempo en función de la geometría de la cinta y propiedades de la órbita. Para las mismas condiciones, el modelo analítico, se compara con los resultados obtenidos del análisis numérico. Este modelo escalable ha sido esencial para la optimización del diseño de la amarra para las misiones de de-orbitado de los satélites, variando la masa del satélite y la altitud inicial de la órbita. El modelo de supervivencia se ha utilizado para construir una función objetivo con el fin de optimizar el diseño de amarras. La función objectivo es el producto del cociente entre la masa de la amarra y la del satélite y el numero de corte por un cierto tiempo. Combinando el modelo de supervivencia con una ecuación dinámica de la amarra donde aparece la fuerza de Lorentz, se elimina el tiempo y se escribe la función objetivo como función de la geometría de la cinta y las propietades de la órbita. Este modelo de optimización, condujo al desarrollo de un software, que esta en proceso de registro por parte de la UPM. La etapa final de este estudio, consiste en la estimación del número de impactos fatales, en una cinta, utilizando por primera vez una ecuación de límite balístico experimental. Esta ecuación ha sido desarollada para cintas, y permite representar los efectos tanto de la velocidad de impacto como el ángulo de impacto. Los resultados obtenidos demuestran que la cinta es altamente resistente a los impactos de basura espacial, y para una cinta con una sección transversal definida, el número de impactos críticos debidos a partículas no rastreables es significativamente menor. ABSTRACT The current space environment, consisting of man-made debris and tiny meteoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Among these debris a significant portion is due to dead satellites and fragments of satellites resulted from explosions and in-orbit collisions. Mitigation of space debris has become an issue of first concern for all the institutions involved in space operations. Bare electrodynamic tethers (EDT) can provide an efficient mechanism for rapid de-orbiting of defunct satellites from low Earth orbit (LEO) at end of life. The research on EDT has been a fruitful field since the 70’s. Thanks to both theoretical studies and in orbit demonstration missions, this technology has been developed very fast in the following decades. During this period, several technical issues were identified and overcome. The core functionality of EDT system greatly depends on their survivability to the micrometeoroids and orbital debris, and a tether can become itself a kind of debris for other operating satellites in case of cutoff due to particle impact; however, this very issue is still inconclusive and conflicting after having a number of space demonstrations. A tether can be completely cut by debris having some minimal diameter. This thesis presents a theoretical analysis of the survivability of tethers in space. The study demonstrates the advantages of tape tethers over conventional round wires particularly on the survivability during the mission. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. As a first approach to the problem, survival probability has been compared for a round and a tape tether of equal mass and length. The rates of fatal impact of orbital debris on round and tape tether, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 shows good agreement with the analytical result. It also shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because de-orbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high. As the next step, an analytical model derived in this work allows to calculate accurately the fatal impact rate per year for a tape tether. The model uses power laws for debris-size ranges, in both ORDEM2000 and MASTER2009 debris flux models, to calculate tape tether survivability at different LEO altitudes. The analytical model, which depends on tape dimensions (width, thickness) and orbital parameters (inclinations, altitudes) is then compared with fully numerical results for different orbit inclinations, altitudes and tape width for both ORDEM2000 and MASTER2009 flux data. This scalable model not only estimates the fatal impact count but has proved essential in optimizing tether design for satellite de-orbit missions varying satellite mass and initial orbital altitude and inclination. Within the frame of this dissertation, a simple analysis has been finally presented, showing the scalable property of tape tether, thanks to the survivability model developed, that allows analyze and compare de-orbit performance for a large range of satellite mass and orbit properties. The work explicitly shows the product of tether-to-satellite mass-ratio and fatal impact count as a function of tether geometry and orbital parameters. Combining the tether dynamic equation involving Lorentz drag with space debris impact survivability model, eliminates time from the expression. Hence the product, is independent of tether de-orbit history and just depends on mission constraints and tether length, width and thickness. This optimization model finally led to the development of a friendly software tool named BETsMA, currently in process of registration by UPM. For the final step, an estimation of fatal impact rate on a tape tether has been done, using for the first time an experimental ballistic limit equation that was derived for tapes and accounts for the effects of both the impact velocity and impact angle. It is shown that tape tethers are highly resistant to space debris impacts and considering a tape tether with a defined cross section, the number of critical events due to impact with non-trackable debris is always significantly low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L ∗ larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive a semi-analytic formulation that enables the study of the long-term dynamics of fast-rotating inert tethers around planetary satellites. These equations take into account the coupling between the translational and rotational motion, which has a non-negligible impact on the dynamics, as the orbital motion of the tether center of mass strongly depends on the tether plane of rotation and its spin rate, and vice-versa. We use these governing equations to explore the effects of this coupling on the dynamics, the lifetime of frozen orbits and the precession of the plane of rotation of the tether.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis aborda metodologías para el cálculo de riesgo de colisión de satélites. La minimización del riesgo de colisión se debe abordar desde dos puntos de vista distintos. Desde el punto de vista operacional, es necesario filtrar los objetos que pueden presentar un encuentro entre todos los objetos que comparten el espacio con un satélite operacional. Puesto que las órbitas, del objeto operacional y del objeto envuelto en la colisión, no se conocen perfectamente, la geometría del encuentro y el riesgo de colisión deben ser evaluados. De acuerdo con dicha geometría o riesgo, una maniobra evasiva puede ser necesaria para evitar la colisión. Dichas maniobras implican un consumo de combustible que impacta en la capacidad de mantenimiento orbital y por tanto de la visa útil del satélite. Por tanto, el combustible necesario a lo largo de la vida útil de un satélite debe ser estimado en fase de diseño de la misión para una correcta definición de su vida útil, especialmente para satélites orbitando en regímenes orbitales muy poblados. Los dos aspectos, diseño de misión y aspectos operacionales en relación con el riesgo de colisión están abordados en esta tesis y se resumen en la Figura 3. En relación con los aspectos relacionados con el diseño de misión (parte inferior de la figura), es necesario evaluar estadísticamente las características de de la población espacial y las teorías que permiten calcular el número medio de eventos encontrados por una misión y su capacidad de reducir riesgo de colisión. Estos dos aspectos definen los procedimientos más apropiados para reducir el riesgo de colisión en fase operacional. Este aspecto es abordado, comenzando por la teoría descrita en [Sánchez-Ortiz, 2006]T.14 e implementada por el autor de esta tesis en la herramienta ARES [Sánchez-Ortiz, 2004b]T.15 proporcionada por ESA para la evaluación de estrategias de evitación de colisión. Esta teoría es extendida en esta tesis para considerar las características de los datos orbitales disponibles en las fases operacionales de un satélite (sección 4.3.3). Además, esta teoría se ha extendido para considerar riesgo máximo de colisión cuando la incertidumbre de las órbitas de objetos catalogados no es conocida (como se da el caso para los TLE), y en el caso de querer sólo considerar riesgo de colisión catastrófico (sección 4.3.2.3). Dichas mejoras se han incluido en la nueva versión de ARES [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 puesta a disposición a través de [SDUP,2014]R.60. En fase operacional, los catálogos que proporcionan datos orbitales de los objetos espaciales, son procesados rutinariamente, para identificar posibles encuentros que se analizan en base a algoritmos de cálculo de riesgo de colisión para proponer maniobras de evasión. Actualmente existe una única fuente de datos públicos, el catálogo TLE (de sus siglas en inglés, Two Line Elements). Además, el Joint Space Operation Center (JSpOC) Americano proporciona mensajes con alertas de colisión (CSM) cuando el sistema de vigilancia americano identifica un posible encuentro. En función de los datos usados en fase operacional (TLE o CSM), la estrategia de evitación puede ser diferente debido a las características de dicha información. Es preciso conocer las principales características de los datos disponibles (respecto a la precisión de los datos orbitales) para estimar los posibles eventos de colisión encontrados por un satélite a lo largo de su vida útil. En caso de los TLE, cuya precisión orbital no es proporcionada, la información de precisión orbital derivada de un análisis estadístico se puede usar también en el proceso operacional así como en el diseño de la misión. En caso de utilizar CSM como base de las operaciones de evitación de colisiones, se conoce la precisión orbital de los dos objetos involucrados. Estas características se han analizado en detalle, evaluando estadísticamente las características de ambos tipos de datos. Una vez concluido dicho análisis, se ha analizado el impacto de utilizar TLE o CSM en las operaciones del satélite (sección 5.1). Este análisis se ha publicado en una revista especializada [Sánchez-Ortiz, 2015b]T.3. En dicho análisis, se proporcionan recomendaciones para distintas misiones (tamaño del satélite y régimen orbital) en relación con las estrategias de evitación de colisión para reducir el riesgo de colisión de manera significativa. Por ejemplo, en el caso de un satélite en órbita heliosíncrona en régimen orbital LEO, el valor típico del ACPL que se usa de manera extendida es 10-4. Este valor no es adecuado cuando los esquemas de evitación de colisión se realizan sobre datos TLE. En este caso, la capacidad de reducción de riesgo es prácticamente nula (debido a las grandes incertidumbres de los datos TLE) incluso para tiempos cortos de predicción. Para conseguir una reducción significativa del riesgo, sería necesario usar un ACPL en torno a 10-6 o inferior, produciendo unas 10 alarmas al año por satélite (considerando predicciones a un día) o 100 alarmas al año (con predicciones a tres días). Por tanto, la principal conclusión es la falta de idoneidad de los datos TLE para el cálculo de eventos de colisión. Al contrario, usando los datos CSM, debido a su mejor precisión orbital, se puede obtener una reducción significativa del riesgo con ACPL en torno a 10-4 (considerando 3 días de predicción). Incluso 5 días de predicción pueden ser considerados con ACPL en torno a 10-5. Incluso tiempos de predicción más largos se pueden usar (7 días) con reducción del 90% del riesgo y unas 5 alarmas al año (en caso de predicciones de 5 días, el número de maniobras se mantiene en unas 2 al año). La dinámica en GEO es diferente al caso LEO y hace que el crecimiento de las incertidumbres orbitales con el tiempo de propagación sea menor. Por el contrario, las incertidumbres derivadas de la determinación orbital son peores que en LEO por las diferencias en las capacidades de observación de uno y otro régimen orbital. Además, se debe considerar que los tiempos de predicción considerados para LEO pueden no ser apropiados para el caso de un satélite GEO (puesto que tiene un periodo orbital mayor). En este caso usando datos TLE, una reducción significativa del riesgo sólo se consigue con valores pequeños de ACPL, produciendo una alarma por año cuando los eventos de colisión se predicen a un día vista (tiempo muy corto para implementar maniobras de evitación de colisión).Valores más adecuados de ACPL se encuentran entre 5•10-8 y 10-7, muy por debajo de los valores usados en las operaciones actuales de la mayoría de las misiones GEO (de nuevo, no se recomienda en este régimen orbital basar las estrategias de evitación de colisión en TLE). Los datos CSM permiten una reducción de riesgo apropiada con ACPL entre 10-5 y 10-4 con tiempos de predicción cortos y medios (10-5 se recomienda para predicciones a 5 o 7 días). El número de maniobras realizadas sería una en 10 años de misión. Se debe notar que estos cálculos están realizados para un satélite de unos 2 metros de radio. En el futuro, otros sistemas de vigilancia espacial (como el programa SSA de la ESA), proporcionarán catálogos adicionales de objetos espaciales con el objetivo de reducir el riesgo de colisión de los satélites. Para definir dichos sistemas de vigilancia, es necesario identificar las prestaciones del catalogo en función de la reducción de riesgo que se pretende conseguir. Las características del catálogo que afectan principalmente a dicha capacidad son la cobertura (número de objetos incluidos en el catalogo, limitado principalmente por el tamaño mínimo de los objetos en función de las limitaciones de los sensores utilizados) y la precisión de los datos orbitales (derivada de las prestaciones de los sensores en relación con la precisión de las medidas y la capacidad de re-observación de los objetos). El resultado de dicho análisis (sección 5.2) se ha publicado en una revista especializada [Sánchez-Ortiz, 2015a]T.2. Este análisis no estaba inicialmente previsto durante la tesis, y permite mostrar como la teoría descrita en esta tesis, inicialmente definida para facilitar el diseño de misiones (parte superior de la figura 1) se ha extendido y se puede aplicar para otros propósitos como el dimensionado de un sistema de vigilancia espacial (parte inferior de la figura 1). La principal diferencia de los dos análisis se basa en considerar las capacidades de catalogación (precisión y tamaño de objetos observados) como una variable a modificar en el caso de un diseño de un sistema de vigilancia), siendo fijas en el caso de un diseño de misión. En el caso de las salidas generadas en el análisis, todos los aspectos calculados en un análisis estadístico de riesgo de colisión son importantes para diseño de misión (con el objetivo de calcular la estrategia de evitación y la cantidad de combustible a utilizar), mientras que en el caso de un diseño de un sistema de vigilancia, los aspectos más importantes son el número de maniobras y falsas alarmas (fiabilidad del sistema) y la capacidad de reducción de riesgo (efectividad del sistema). Adicionalmente, un sistema de vigilancia espacial debe ser caracterizado por su capacidad de evitar colisiones catastróficas (evitando así in incremento dramático de la población de basura espacial), mientras que el diseño de una misión debe considerar todo tipo de encuentros, puesto que un operador está interesado en evitar tanto las colisiones catastróficas como las letales. Del análisis de las prestaciones (tamaño de objetos a catalogar y precisión orbital) requeridas a un sistema de vigilancia espacial se concluye que ambos aspectos han de ser fijados de manera diferente para los distintos regímenes orbitales. En el caso de LEO se hace necesario observar objetos de hasta 5cm de radio, mientras que en GEO se rebaja este requisito hasta los 100 cm para cubrir las colisiones catastróficas. La razón principal para esta diferencia viene de las diferentes velocidades relativas entre los objetos en ambos regímenes orbitales. En relación con la precisión orbital, ésta ha de ser muy buena en LEO para poder reducir el número de falsas alarmas, mientras que en regímenes orbitales más altos se pueden considerar precisiones medias. En relación con los aspectos operaciones de la determinación de riesgo de colisión, existen varios algoritmos de cálculo de riesgo entre dos objetos espaciales. La Figura 2 proporciona un resumen de los casos en cuanto a algoritmos de cálculo de riesgo de colisión y como se abordan en esta tesis. Normalmente se consideran objetos esféricos para simplificar el cálculo de riesgo (caso A). Este caso está ampliamente abordado en la literatura y no se analiza en detalle en esta tesis. Un caso de ejemplo se proporciona en la sección 4.2. Considerar la forma real de los objetos (caso B) permite calcular el riesgo de una manera más precisa. Un nuevo algoritmo es definido en esta tesis para calcular el riesgo de colisión cuando al menos uno de los objetos se considera complejo (sección 4.4.2). Dicho algoritmo permite calcular el riesgo de colisión para objetos formados por un conjunto de cajas, y se ha presentado en varias conferencias internacionales. Para evaluar las prestaciones de dicho algoritmo, sus resultados se han comparado con un análisis de Monte Carlo que se ha definido para considerar colisiones entre cajas de manera adecuada (sección 4.1.2.3), pues la búsqueda de colisiones simples aplicables para objetos esféricos no es aplicable a este caso. Este análisis de Monte Carlo se considera la verdad a la hora de calcular los resultados del algoritmos, dicha comparativa se presenta en la sección 4.4.4. En el caso de satélites que no se pueden considerar esféricos, el uso de un modelo de la geometría del satélite permite descartar eventos que no son colisiones reales o estimar con mayor precisión el riesgo asociado a un evento. El uso de estos algoritmos con geometrías complejas es más relevante para objetos de dimensiones grandes debido a las prestaciones de precisión orbital actuales. En el futuro, si los sistemas de vigilancia mejoran y las órbitas son conocidas con mayor precisión, la importancia de considerar la geometría real de los satélites será cada vez más relevante. La sección 5.4 presenta un ejemplo para un sistema de grandes dimensiones (satélite con un tether). Adicionalmente, si los dos objetos involucrados en la colisión tienen velocidad relativa baja (y geometría simple, Caso C en la Figura 2), la mayor parte de los algoritmos no son aplicables requiriendo implementaciones dedicadas para este caso particular. En esta tesis, uno de estos algoritmos presentado en la literatura [Patera, 2001]R.26 se ha analizado para determinar su idoneidad en distintos tipos de eventos (sección 4.5). La evaluación frete a un análisis de Monte Carlo se proporciona en la sección 4.5.2. Tras este análisis, se ha considerado adecuado para abordar las colisiones de baja velocidad. En particular, se ha concluido que el uso de algoritmos dedicados para baja velocidad son necesarios en función del tamaño del volumen de colisión proyectado en el plano de encuentro (B-plane) y del tamaño de la incertidumbre asociada al vector posición entre los dos objetos. Para incertidumbres grandes, estos algoritmos se hacen más necesarios pues la duración del intervalo en que los elipsoides de error de los dos objetos pueden intersecar es mayor. Dicho algoritmo se ha probado integrando el algoritmo de colisión para objetos con geometrías complejas. El resultado de dicho análisis muestra que este algoritmo puede ser extendido fácilmente para considerar diferentes tipos de algoritmos de cálculo de riesgo de colisión (sección 4.5.3). Ambos algoritmos, junto con el método Monte Carlo para geometrías complejas, se han implementado en la herramienta operacional de la ESA CORAM, que es utilizada para evaluar el riesgo de colisión en las actividades rutinarias de los satélites operados por ESA [Sánchez-Ortiz, 2013a]T.11. Este hecho muestra el interés y relevancia de los algoritmos desarrollados para la mejora de las operaciones de los satélites. Dichos algoritmos han sido presentados en varias conferencias internacionales [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1. ABSTRACT This document addresses methodologies for computation of the collision risk of a satellite. Two different approaches need to be considered for collision risk minimisation. On an operational basis, it is needed to perform a sieve of possible objects approaching the satellite, among all objects sharing the space with an operational satellite. As the orbits of both, satellite and the eventual collider, are not perfectly known but only estimated, the miss-encounter geometry and the actual risk of collision shall be evaluated. In the basis of the encounter geometry or the risk, an eventual manoeuvre may be required to avoid the conjunction. Those manoeuvres will be associated to a reduction in the fuel for the mission orbit maintenance, and thus, may reduce the satellite operational lifetime. Thus, avoidance manoeuvre fuel budget shall be estimated, at mission design phase, for a better estimation of mission lifetime, especially for those satellites orbiting in very populated orbital regimes. These two aspects, mission design and operational collision risk aspects, are summarised in Figure 3, and covered along this thesis. Bottom part of the figure identifies the aspects to be consider for the mission design phase (statistical characterisation of the space object population data and theory computing the mean number of events and risk reduction capability) which will define the most appropriate collision avoidance approach at mission operational phase. This part is covered in this work by starting from the theory described in [Sánchez-Ortiz, 2006]T.14 and implemented by this author in ARES tool [Sánchez-Ortiz, 2004b]T.15 provided by ESA for evaluation of collision avoidance approaches. This methodology has been now extended to account for the particular features of the available data sets in operational environment (section 4.3.3). Additionally, the formulation has been extended to allow evaluating risk computation approached when orbital uncertainty is not available (like the TLE case) and when only catastrophic collisions are subject to study (section 4.3.2.3). These improvements to the theory have been included in the new version of ESA ARES tool [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 and available through [SDUP,2014]R.60. At the operation phase, the real catalogue data will be processed on a routine basis, with adequate collision risk computation algorithms to propose conjunction avoidance manoeuvre optimised for every event. The optimisation of manoeuvres in an operational basis is not approached along this document. Currently, American Two Line Element (TLE) catalogue is the only public source of data providing orbits of objects in space to identify eventual conjunction events. Additionally, Conjunction Summary Message (CSM) is provided by Joint Space Operation Center (JSpOC) when the American system identifies a possible collision among satellites and debris. Depending on the data used for collision avoidance evaluation, the conjunction avoidance approach may be different. The main features of currently available data need to be analysed (in regards to accuracy) in order to perform estimation of eventual encounters to be found along the mission lifetime. In the case of TLE, as these data is not provided with accuracy information, operational collision avoidance may be also based on statistical accuracy information as the one used in the mission design approach. This is not the case for CSM data, which includes the state vector and orbital accuracy of the two involved objects. This aspect has been analysed in detail and is depicted in the document, evaluating in statistical way the characteristics of both data sets in regards to the main aspects related to collision avoidance. Once the analysis of data set was completed, investigations on the impact of those features in the most convenient avoidance approaches have been addressed (section 5.1). This analysis is published in a peer-reviewed journal [Sánchez-Ortiz, 2015b]T.3. The analysis provides recommendations for different mission types (satellite size and orbital regime) in regards to the most appropriate collision avoidance approach for relevant risk reduction. The risk reduction capability is very much dependent on the accuracy of the catalogue utilized to identify eventual collisions. Approaches based on CSM data are recommended against the TLE based approach. Some approaches based on the maximum risk associated to envisaged encounters are demonstrated to report a very large number of events, which makes the approach not suitable for operational activities. Accepted Collision Probability Levels are recommended for the definition of the avoidance strategies for different mission types. For example for the case of a LEO satellite in the Sun-synchronous regime, the typically used ACPL value of 10-4 is not a suitable value for collision avoidance schemes based on TLE data. In this case the risk reduction capacity is almost null (due to the large uncertainties associated to TLE data sets, even for short time-to-event values). For significant reduction of risk when using TLE data, ACPL on the order of 10-6 (or lower) seems to be required, producing about 10 warnings per year and mission (if one-day ahead events are considered) or 100 warnings per year (for three-days ahead estimations). Thus, the main conclusion from these results is the lack of feasibility of TLE for a proper collision avoidance approach. On the contrary, for CSM data, and due to the better accuracy of the orbital information when compared with TLE, ACPL on the order of 10-4 allows to significantly reduce the risk. This is true for events estimated up to 3 days ahead. Even 5 days ahead events can be considered, but ACPL values down to 10-5 should be considered in such case. Even larger prediction times can be considered (7 days) for risk reduction about 90%, at the cost of larger number of warnings up to 5 events per year, when 5 days prediction allows to keep the manoeuvre rate in 2 manoeuvres per year. Dynamics of the GEO orbits is different to that in LEO, impacting on a lower increase of orbits uncertainty along time. On the contrary, uncertainties at short prediction times at this orbital regime are larger than those at LEO due to the differences in observation capabilities. Additionally, it has to be accounted that short prediction times feasible at LEO may not be appropriate for a GEO mission due to the orbital period being much larger at this regime. In the case of TLE data sets, significant reduction of risk is only achieved for small ACPL values, producing about a warning event per year if warnings are raised one day in advance to the event (too short for any reaction to be considered). Suitable ACPL values would lay in between 5•10-8 and 10-7, well below the normal values used in current operations for most of the GEO missions (TLE-based strategies for collision avoidance at this regime are not recommended). On the contrary, CSM data allows a good reduction of risk with ACPL in between 10-5 and 10-4 for short and medium prediction times. 10-5 is recommended for prediction times of five or seven days. The number of events raised for a suitable warning time of seven days would be about one in a 10-year mission. It must be noted, that these results are associated to a 2 m radius spacecraft, impact of the satellite size are also analysed within the thesis. In the future, other Space Situational Awareness Systems (SSA, ESA program) may provide additional catalogues of objects in space with the aim of reducing the risk. It is needed to investigate which are the required performances of those catalogues for allowing such risk reduction. The main performance aspects are coverage (objects included in the catalogue, mainly limited by a minimum object size derived from sensor performances) and the accuracy of the orbital data to accurately evaluate the conjunctions (derived from sensor performance in regards to object observation frequency and accuracy). The results of these investigations (section 5.2) are published in a peer-reviewed journal [Sánchez-Ortiz, 2015a]T.2. This aspect was not initially foreseen as objective of the thesis, but it shows how the theory described in the thesis, initially defined for mission design in regards to avoidance manoeuvre fuel allocation (upper part of figure 1), is extended and serves for additional purposes as dimensioning a Space Surveillance and Tracking (SST) system (bottom part of figure below). The main difference between the two approaches is the consideration of the catalogue features as part of the theory which are not modified (for the satellite mission design case) instead of being an input for the analysis (in the case of the SST design). In regards to the outputs, all the features computed by the statistical conjunction analysis are of importance for mission design (with the objective of proper global avoidance strategy definition and fuel allocation), whereas for the case of SST design, the most relevant aspects are the manoeuvre and false alarm rates (defining a reliable system) and the Risk Reduction capability (driving the effectiveness of the system). In regards to the methodology for computing the risk, the SST system shall be driven by the capacity of providing the means to avoid catastrophic conjunction events (avoiding the dramatic increase of the population), whereas the satellite mission design should consider all type of encounters, as the operator is interested on avoiding both lethal and catastrophic collisions. From the analysis of the SST features (object coverage and orbital uncertainty) for a reliable system, it is concluded that those two characteristics are to be imposed differently for the different orbital regimes, as the population level is different depending on the orbit type. Coverage values range from 5 cm for very populated LEO regime up to 100 cm in the case of GEO region. The difference on this requirement derives mainly from the relative velocity of the encounters at those regimes. Regarding the orbital knowledge of the catalogues, very accurate information is required for objects in the LEO region in order to limit the number of false alarms, whereas intermediate orbital accuracy can be considered for higher orbital regimes. In regards to the operational collision avoidance approaches, several collision risk algorithms are used for evaluation of collision risk of two pair of objects. Figure 2 provides a summary of the different collision risk algorithm cases and indicates how they are covered along this document. The typical case with high relative velocity is well covered in literature for the case of spherical objects (case A), with a large number of available algorithms, that are not analysed in detailed in this work. Only a sample case is provided in section 4.2. If complex geometries are considered (Case B), a more realistic risk evaluation can be computed. New approach for the evaluation of risk in the case of complex geometries is presented in this thesis (section 4.4.2), and it has been presented in several international conferences. The developed algorithm allows evaluating the risk for complex objects formed by a set of boxes. A dedicated Monte Carlo method has also been described (section 4.1.2.3) and implemented to allow the evaluation of the actual collisions among a large number of simulation shots. This Monte Carlo runs are considered the truth for comparison of the algorithm results (section 4.4.4). For spacecrafts that cannot be considered as spheres, the consideration of the real geometry of the objects may allow to discard events which are not real conjunctions, or estimate with larger reliability the risk associated to the event. This is of particular importance for the case of large spacecrafts as the uncertainty in positions of actual catalogues does not reach small values to make a difference for the case of objects below meter size. As the tracking systems improve and the orbits of catalogued objects are known more precisely, the importance of considering actual shapes of the objects will become more relevant. The particular case of a very large system (as a tethered satellite) is analysed in section 5.4. Additionally, if the two colliding objects have low relative velocity (and simple geometries, case C in figure above), the most common collision risk algorithms fail and adequate theories need to be applied. In this document, a low relative velocity algorithm presented in the literature [Patera, 2001]R.26 is described and evaluated (section 4.5). Evaluation through comparison with Monte Carlo approach is provided in section 4.5.2. The main conclusion of this analysis is the suitability of this algorithm for the most common encounter characteristics, and thus it is selected as adequate for collision risk estimation. Its performances are evaluated in order to characterise when it can be safely used for a large variety of encounter characteristics. In particular, it is found that the need of using dedicated algorithms depend on both the size of collision volume in the B-plane and the miss-distance uncertainty. For large uncertainties, the need of such algorithms is more relevant since for small uncertainties the encounter duration where the covariance ellipsoids intersect is smaller. Additionally, its application for the case of complex satellite geometries is assessed (case D in figure above) by integrating the developed algorithm in this thesis with Patera’s formulation for low relative velocity encounters. The results of this analysis show that the algorithm can be easily extended for collision risk estimation process suitable for complex geometry objects (section 4.5.3). The two algorithms, together with the Monte Carlo method, have been implemented in the operational tool CORAM for ESA which is used for the evaluation of collision risk of ESA operated missions, [Sánchez-Ortiz, 2013a]T.11. This fact shows the interest and relevance of the developed algorithms for improvement of satellite operations. The algorithms have been presented in several international conferences, [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The San Pedro Bridge has six spans and is 750 m (2460 ft) long, 88 m (290 ft) high, 12 m (39 ft) wide, and curved with a radius of 700 m (2300 ft). It was built in 1993 using the cantilever method. Its super - structure is a prestressed concrete box girder with main spans of 150 m (490 ft). In 2008 and 2009, the width of the platform was enlarged to 23 m (75 ft) using five movable sets of scaffolding. The bridge remained open to traffic during construction. The original platform was widened 6 m (20 ft) on each side by connecting a new lightweight concrete cantilever to the original upper slab. These cantilevers were supported by steelstruts. The tie into the upper slab was made with new transverse post-tensioned tendons. The original superstructure was strengthened to resist the additional dead load of the expansion and live loads of the extra traffic. An additional new central web and a composite concrete-steel section were constructed and connected to the concrete box and central web using vertical high-strength post-tensioning bars. Also, external post-tensioning cables were implemented. It was also necessary to strengthen the connection of the original concrete box section to the piers. Detailed calculations were performed to evaluate the load distribution transmitted to the piers by the webs and by the original inclined concrete walls of the box girder. Finally, a detailed second-order-analysis of the complete structure was made to guarantee the resistance of the piers compared with actual loads

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De-orbiting satellites at end of mission would prevent generation of new space debris. A proposed de-orbit technology involves a bare conductive tape-tether, which uses neither propellant nor power supply while generating power for on-board use during de-orbiting. The present work shows how to select tape dimensions for a generic mission so as to satisfy requirements of very small tether-to-satellite mass ratio mt/MS and probability Nf of tether cut by small debris, while keeping de-orbit time tf short and product tf ×× tether length low to reduce maneuvers in avoiding collisions with large debris. Design is here discussed for particular missions (initial orbit of 720 km altitude and 63° and 92° inclinations, and 3 disparate MS values, 37.5, 375, and 3750 kg), proving it scalable. At mid-inclination and a mass-ratio of a few percent, de-orbit time takes about 2 weeks and Nf is a small fraction of 1%, with tape dimensions ranging from 1 to 6 cm, 10 to 54 μμm, and 2.8 to 8.6 km. Performance drop from middle to high inclination proved moderate: if allowing for twice as large mt/MS, increases are reduced to a factor of 4 in tf and a slight one in Nf, except for multi-ton satellites, somewhat more requiring because efficient orbital-motion-limited electron collection restricts tape-width values, resulting in tape length (slightly) increasing too.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Space tether is a thin, multi-kilometers long conductive wire, joining a satellite and some opposite end mass, and keeping vertical in orbit by the gravity-gradient. The ambient plasma, being highly conductive, is equipotential in its own co-moving frame. In the tether frame, in relative motion however, there is in the plasma a motional electric field of order of 100 V/km, product of (near) orbital velocity and geomagnetic field. The electromotive force established over the tether length allows plasma contactor devices to collect electrons at one polarized-positive (anodic) end and eject electrons at the opposite end, setting up a current along a standard, fully insulated tether. The Lorentz force exerted on the current by the geomagnetic field itself is always drag; this relies on just thermodynamics, like air drag. The bare tether concept, introduced in 1992 at the Universidad Politécnica de Madrid (UPM), takes away the insulation and has electrons collected over the tether segment coming out polarized positive; the concept rests on 2D (Langmuir probe) current-collection in plasmas being greatly more efficient than 3D collection. A Plasma Contactor ejects electrons at the cathodic end. A bare tether with a thin-tape cross section has much greater perimeter and de-orbits much faster than a (corresponding) round bare tether of equal length and mass. Further, tethers being long and thin, they are prone to cuts by abundant small space debris, but BETs has shown that the tape has a probability of being cut per unit time smaller by more than one order of magnitude than the corresponding round tether (debris comparable to its width are much less abundant than debris comparable to the radius of the corresponding round tether). Also, the tape collects much more current, and de-orbits much faster, than a corresponding multi-line “tape” made of thin round wires cross-connected to survive debris cuts. Tethers use a dissipative mechanism quite different from air drag and can de-orbit in just a few months; also, tape tethers are much lighter than round tethers of equal length and perimeter, which can capture equal current. The 3 disparate tape dimensions allow easily scalable design. Switching the cathodic Contactor off-on allows maneuvering to avoid catastrophic collisions with big tracked debris. Lorentz braking is as reliable as air drag. Tethers are still reasonably effective at high inclinations, where the motional field is small, because the geomagnetic field is not just a dipole along the Earth polar axis. BETs is the EC FP7/Space Project 262972, financed in about 1.8 million euros, from 1 November 2010 to 31 January 2014, and carrying out RTD work on de-orbiting space debris. Coordinated by UPM, it has partners Università di Padova, ONERA-Toulouse, Colorado State University, SME Emxys, DLR–Bremen, and Fundación Tecnalia. BETs work involves 1) Designing, building, and ground-testing basic hardware subsystems Cathodic Plasma Contactor, Tether Deployment Mechanism, Power Control Module, and Tape with crosswise and lengthwise structure. 2) Testing current collection and verifying tether dynamical stability. 3) Preliminary design of tape dimensions for a generic mission, conducive to low system-to-satellite mass ratio and probability of cut by small debris, and ohmic-effects regime of tether current for fast de-orbiting. Reaching TRL 4-5, BETs appears ready for in-orbit demostration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Containing most of the L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) on their tips, microvilli are believed to promote the initial arrest of neutrophils on endothelium. At the rolling stage following arrest, the lifetimes of the involved molecular bonds depend on the pulling force imposed by the shear stress of blood flow. With two different methods, electron microscopy and micropipette manipulation, we have obtained two comparable neutrophil microvillus lengths, both ≈0.3 μm in average. We have found also that, under a pulling force, a microvillus can be extended (microvillus extension) or a long thin membrane cylinder (a tether) can be formed from it (tether formation). If the force is ≤34 pN (± 3 pN), the length of the microvillus will be extended; if the force is >61 pN (± 5 pN), a tether will be formed from the microvillus at a constant velocity, which depends linearly on the force. When the force is between 34 pN and 61 pN (transition zone), the degree of association between membrane and cytoskeleton in individual microvilli will dictate whether microvillus extension or tether formation occurs. When a microvillus is extended, it acts like a spring with a spring constant of ≈43 pN/μm. In contrast to a rigid or nonextendible microvillus, both microvillus extension and tether formation can decrease the pulling force imposed on the adhesive bonds, and thus prolonging the persistence of the bonds at high physiological shear stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replication system of bacteriophage T4 uses a trimeric ring-shaped processivity clamp (gp45) to tether the replication polymerase (gp43) to the template-primer DNA. This ring is placed onto the DNA by an ATPase-driven clamp-loading complex (gp44/62) where it then transfers, in closed form, to the polymerase. It generally has been assumed that one of the functions of the loading machinery is to open the clamp to place it around the DNA. However, the mechanism by which this occurs has not been fully defined. In this study we design and characterize a double-mutant gp45 protein that contains pairs of cysteine residues located at each monomer-monomer interface of the trimeric clamp. This mutant protein is functionally equivalent to wild-type gp45. However, when all three monomer-monomer interfaces are tethered by covalent crosslinks formed (reversibly or irreversibly) between the cysteine pairs these closed clamps can no longer be loaded onto the DNA nor onto the polymerase, effectively eliminating processive strand-displacement DNA synthesis. Analysis of the individual steps of the clamp-loading process shows that the ATPase-dependent interactions between the clamp and the clamp loader that precede DNA binding are hyperstimulated by the covalently crosslinked ring, suggesting that binding of the closed ring induces a futile, ATP-driven, ring-opening cycle. These findings and others permit further characterization and ordering of the steps involved in the T4 clamp-loading process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yeast telomere DNA consists of a continuous, ≈330-bp tract of the heterogeneous repeat TG1-3 with irregularly spaced, high affinity sites for the protein Rap1p. Yeast monitor, or count, the number of telomeric Rap1p C termini in a negative feedback mechanism to modulate the length of the terminal TG1-3 repeats, and synthetic telomeres that tether Rap1p molecules adjacent to the TG1-3 tract cause wild-type cells to maintain a shorter TG1-3 tract. To identify trans-acting proteins required to count Rap1p molecules, these same synthetic telomeres were placed in two short telomere mutants: yku70Δ (which lack the yeast Ku70 protein) and tel1Δ (which lack the yeast ortholog of ATM). Although both mutants maintain telomeres with ≈100 bp of TG1-3, only yku70Δ cells maintained shorter TG1-3 repeats in response to internal Rap1p molecules. This distinct response to internal Rap1p molecules was not caused by a variation in Rap1p site density in the TG1-3 repeats as sequencing of tel1Δ and yku70Δ telomeres showed that both strains have only five to six Rap1p sites per 100-bp telomere. In addition, the tel1Δ short telomere phenotype was epistatic to the unregulated telomere length caused by deletion of the Rap1p C-terminal domain. Thus, the length of the TG1-3 repeats in tel1Δ cells was independent of the number of the Rap1p C termini at the telomere. These data indicate that tel1Δ cells use an alternative mechanism to regulate telomere length that is distinct from monitoring the number of telomere binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated ≈4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAP kinase Fus3 regulates many different signal transduction outputs that govern the ability of Saccharomyces cerevisiae haploid cells to mate. Here we characterize Fus3 localization and association with other proteins. By indirect immunofluorescence, Fus3 localizes in punctate spots throughout the cytoplasm and nucleus, with slightly enhanced nuclear localization after pheromone stimulation. This broad distribution is consistent with the critical role Fus3 plays in mating and contrasts that of Kss1, which concentrates in the nucleus and is not required for mating. The majority of Fus3 is soluble and not bound to any one protein; however, a fraction is stably bound to two proteins of ∼60 and ∼70 kDa. Based on fractionation and gradient density centrifugation properties, Fus3 exists in a number of complexes, with its activity critically dependent upon association with other proteins. In the presence of α factor, nearly all of the active Fus3 localizes in complexes of varying size and specific activity, whereas monomeric Fus3 has little activity. Fus3 has highest specific activity within a 350- to 500-kDa complex previously shown to contain Ste5, Ste11, and Ste7. Ste5 is required for Fus3 to exist in this complex. Upon α factor withdrawal, a pool of Fus3 retains activity for more than one cell cycle. Collectively, these results support Ste5’s role as a tether and suggest that association of Fus3 in complexes in the presence of pheromone may prevent inactivation in addition to enhancing activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleolar localization elements (NoLEs) of U17 small nucleolar RNA (snoRNA), which is essential for rRNA processing and belongs to the box H/ACA snoRNA family, were analyzed by fluorescence microscopy. Injection of mutant U17 transcripts into Xenopus laevis oocyte nuclei revealed that deletion of stems 1, 2, and 4 of U17 snoRNA reduced but did not prevent nucleolar localization. The deletion of stem 3 had no adverse effect. Therefore, the hairpins of the hairpin–hinge–hairpin–tail structure formed by these stems are not absolutely critical for nucleolar localization of U17, nor are sequences within stems 1, 3, and 4, which may tether U17 to the rRNA precursor by base pairing. In contrast, box H and box ACA are major NoLEs; their combined substitution or deletion abolished nucleolar localization of U17 snoRNA. Mutation of just box H or just the box ACA region alone did not fully abolish the nucleolar localization of U17. This indicates that the NoLEs of the box H/ACA snoRNA family function differently from the bipartite NoLEs (conserved boxes C and D) of box C/D snoRNAs, where mutation of either box alone prevents nucleolar localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Gram-positive bacteria covalently tether their surface adhesins to the cell wall peptidoglycan. We find that surface proteins of Staphylococcus aureus are linked to the cell wall by sortase, an enzyme that cleaves polypeptides at a conserved LPXTG motif. S. aureus mutants lacking sortase fail to process and display surface proteins and are defective in the establishment of infections. Thus, the cell wall envelope of Gram-positive bacteria represents a surface organelle responsible for interactions with the host environment during the pathogenesis of bacterial infections.