946 resultados para Tendon repair


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA damage is extremely detrimental to the cell and must be repaired to protect the genome. DNA is capable of conducting charge through the overlapping π-orbitals of stacked bases; this phenomenon is extremely sensitive to the integrity of the π-stack, as perturbations attenuate DNA charge transport (CT). Based on the E. coli base excision repair (BER) proteins EndoIII and MutY, it has recently been proposed that redox-active proteins containing metal clusters can utilize DNA CT to signal one another to locate sites of DNA damage.

To expand our repertoire of proteins that utilize DNA-mediated signaling, we measured the DNA-bound redox potential of the nucleotide excision repair (NER) helicase XPD from Sulfolobus acidocaldarius. A midpoint potential of 82 mV versus NHE was observed, resembling that of the previously reported BER proteins. The redox signal increases in intensity with ATP hydrolysis in only the WT protein and mutants that maintain ATPase activity and not for ATPase-deficient mutants. The signal increase correlates directly with ATP activity, suggesting that DNA-mediated signaling may play a general role in protein signaling. Several mutations in human XPD that lead to XP-related diseases have been identified; using SaXPD, we explored how these mutations, which are conserved in the thermophile, affect protein electrochemistry.

To further understand the electrochemical signaling of XPD, we studied the yeast S. cerevisiae Rad3 protein. ScRad3 mutants were incubated on a DNA-modified electrode and exhibited a similar redox potential to SaXPD. We developed a haploid strain of S. cerevisiae that allowed for easy manipulation of Rad3. In a survival assay, the ATPase- and helicase-deficient mutants show little survival, while the two disease-related mutants exhibit survival similar to WT. When both a WT and G47R (ATPase/helicase deficient) strain were challenged with different DNA damaging agents, both exhibited comparable survival in the presence of hydroxyurea, while with methyl methanesulfonate and camptothecin, the G47R strain exhibits a significant change in growth, suggesting that Rad3 is involved in repairing damage beyond traditional NER substrates. Together, these data expand our understanding of redox-active proteins at the interface of DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to its specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and micro-damage, accumulated by fatigue or creep, is removed minimizing the risk of fracture. Nevertheless, bone is not always able to repair itself completely. Actually, if bone repairing function is slower than micro-damage accumulation, a type of bone fracture, usually known as "stress fracture", can finally evolve. In this paper, we propose a bone remodelling continuous model able to simulate micro-damage growth and repair in a coupled way and able therefore to predict the occurrence of "stress fractures". The biological bone remodelling process is modelled in terms of equations that describe the activity of basic multicellular units. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation is achieved. In overloading, bone porosity decreases unless the damage rate is so high that causes resorption or "stress fracture".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The north-south line in Amsterdam is being built underneath the historic centre of the city. Three deep stations are being constructed in deep excavations supported by diaphragm walls. During the excavation for Vijzelgracht station, leakage through the wall resulted in large settlements and damage to historic buildings, which threatened continuation of the project. The authors analysed the cause of the leakage and the damage to the buildings. With the application of robust preventative measures at two of the deep excavations it was possible to continue the project. This paper reports on the cause of the events, the damage to the buildings and the counter-measures taken. It includes lessons learned for the project and for the foundations industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.