940 resultados para TUMOR PROGRESSION
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dog can spontaneously develop prostate cancer and consequently can be used as an experimental model for prostatic diseases associated with aging, including benign prostate hyperplasia (BPH) and prostate carcinoma (PCa). DNA copy number variations (CNVs) have been used to identify genes associated with cancer development and progression. DNA microarray based comparative genomic hybridization (aCGH) is a technique that allows to identify copy number of thousands of genes throughout the genome. aCGH was used to identify genomic regions with significantly different DNA copy number in three benign prostatic hyperplasia (BPH), four proliferative inflammatory atrophy (PIA), and 14 canine prostate carcinoma (PCa). Five histologically normal prostate tissue were used as reference. Genomic DNA was extracted from formalin fixed and paraffin embedded samples and CNVs data was evaluated in Canine Genome CGH Microarray 4x44K (G2519F, Design ID021193, Agilent). Data analysis was performed using Genomic Workbench Standard Edition 5.0.14 (Agilent). PCa showed higher number of altered genes related to canonical diseases process, cellular functions and molecular pathways as well as greater inter-relationship between genes, compared with PIA and BPH. In conclusion, PCa showed a more complex genotype, being losses the most frequent genomic changes. Some discrepancies between genomic alterations in human and canine carcinomas may indicate the different clinical behavior of these tumors in these two species. In addition, it was observed was an ascending pattern of genomic complexity in BPH, PIA and CA consistent with a model of multistep tumor progression.
Resumo:
Osteosarcoma (OS) is the most common primary malignant bone tumor, usually developing in children and adolescents, and is highly invasive and metastatic, potentially developing chemoresistance. Thus, novel effective treatment regimens are urgently needed. This study was the first to investigate the anticancer effects of dehydroxymethylepoxyquinomicin (DHMEQ), a highly specific nuclear factor-kappa B (NF-kappa B) inhibitor, on the OS cell lines HOS and MG-63. We demonstrate that NF-kappa B blockade by DHMEQ inhibits proliferation, decreases the mitotic index, and triggers apoptosis of OS cells. We examined the effects of combination treatment with DHMEQ and cisplatin, doxorubicin, or methotrexate, drugs commonly used in OS treatment. Using the median effect method of Chou and Talalay, we evaluated the combination indices for simultaneous and sequential treatment schedules. In all cases, combination with a chemotherapeutic drug produced a synergistic effect, even at low single-agent cytotoxic levels. When cells were treated with DHMEQ and cisplatin, a more synergistic effect was obtained using simultaneous treatment. For the doxorubicin and methotrexate combination, a more synergistic effect was achieved with sequential treatment using DHMEQ before chemotherapy. These synergistic effects were accompanied by enhancement of chemoinduced apoptosis. Interestingly, the highest apoptotic effect was reached with sequential exposure in both cell lines, independent of the chemotherapeutic agent used. Likewise, DHMEQ decreased cell invasion and migration, crucial steps for tumor progression. Our data suggest that combining DHMEQ with chemotherapeutic drugs might be useful for planning new therapeutic strategies for OS treatment, mainly in resistant and metastatic cases. Anti-Cancer Drugs 23:638-650 (C) 2012 Wolters Kluwer Health broken vertical bar Lippincott Williams & Wilkins.
Resumo:
The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells. (C) 2012 International Society for Advancement of Cytometry
Resumo:
Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.
Resumo:
Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4 degrees C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-alpha and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11 beta-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.
Resumo:
Objective: The aim of this study was to determine thyroid hormone (TH) profile in postmenopausal patients with breast cancer (BC). Subjects and methods: 12 CaM patients stages I or II, without interventions that could interfere with tumor progression were selected, as well as and a control group with 18 postmenopausal women without CaM. We measured serum anti-thyroperoxidase antibody (TPOAB), thyroid-stimulating hormone (TSH), free thyroxine (T4L), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), before and after surgery, besides immunohistochemistry for estrogen (ER) and progesterone (PR) receptors. Results: Four patients with CaM showed changes in thyroid hormone profile: two had hyperthyroidism, one hypothyroidism, and one was positive for TPO-AB. All of them positive for ER and PR.TSH levels in breast cancer patients were not different from levels found in the control group (1.89 +/- 1.56 vs. 2.86 +/- 3.12 mIU/mL), but the levels of T4L in patients with CaM were statistically higher than those of the control group (1.83 +/- 0.57 vs. 1.10 +/- 0.20 ng/dL). Conclusion: These results reinforce the need for assessment of thyroid status in CaM patients, since in the absence of E2, changes in clinical HTs can act in E2-controlled processes. Arq Bras Endocrinol Metab. 2012;56(4):238-43
Resumo:
This paper describes a new method for the preparation of sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, DM-1, and 3-oxo-penta-1,4-dienyl-bis (2-methoxy-phenolate), DM-2. The aim of this work was to evaluate the antitumor effects of DM-1 in adjuvant chemotherapy for breast cancer treatment. Mice bearing mammary adenocarcinomas (Ehrlich ascites tumors) were treated with paclitaxel alone, DM-1 alone, and paclitaxel + DM-1. Tumor samples were used to perform cytological analysis by the Papanicolaou method and apoptosis analysis by annexin V and phosphorylated caspase 3. The paclitaxel + DM-1 group had decreased tumor areas and tumor volumes, and the frequency of metastasis was significantly reduced. This caused a decrease in cachexia, which is usually caused by the tumor. Furthermore, treatment with paclitaxel + DM-1 and DM-1 alone increased the occurrence of apoptosis up to 40% in tumor cells, which is 35% more than in the group treated with paclitaxel alone. This cell death was mainly caused through phosphorylated caspase 3 (11% increase in paclitaxel + DM-1 compared to the paclitaxel group), as confirmed by reduced malignancy criteria in the ascitic fluid. DM-1 emerges as a potential treatment for breast cancer and may act as an adjuvant in chemotherapy, enhancing antitumor drug activity with reduced side effects.
Resumo:
Melanoma is one of the most treatment-resistant malignancies and regardless of new therapeutic tactics the outcome remains dismal. Polo-like kinase 1 (PLK1) has been shown to be over-expressed in a variety of tumors, becoming an attractive target for cancer management. In the present study we tested the in vitro antitumor activities of BI 2536, a selective inhibitor of PLK1, against two melanoma cell lines. Our results showed that nanomolar concentrations (10-150 nmol/L) of the drug significantly decreased cell proliferation and clonogenicity, promoting cell cycle arrest in G2/M. Targeting the cell cycle offers an attractive potential cancer-treatment option. Herein we show that PLK1 inhibition may be a feasible approach for the impairment of tumor progression and dissemination. This in vitro profile of melanoma cell growth inhibition by PLK1 modulation may be an interesting model to be tested in association with first-line antineoplasic agents in melanomas.
Resumo:
Many studies have reported increased expression of S100 A7 (psoriasin) in neoplastic lesions. Among them are studies on breast carcinoma, bladder squamous cell carcinoma, skin tumors and oral cavity squamous cell carcinoma. The expression of S100 A7 has not been described for laryngeal cancer. Objective: This study aims to identify the expression of the calcium-binding protein S100 A7 and its correlation with squamous cell carcinomas of the larynx. Material and Methods: Specimens from 63 patients were submitted to immunohistochemistry testing with antibody S100 A7. Results were classified and compared. Results: The group with highly differentiated tumors had the highest treatment failure scores. Moderately differentiated tumors had higher treatment failure scores than poorly differentiated tumors. Higher scores were predominantly seen on stages I and II in moderately differentiated tumors, whereas score distribution was more homogeneous in advanced stage disease (III and IV). Regarding failure in treatment, the group scoring zero (3/4 complications: 75%) differed significantly from the remaining groups (13/59: 22%). Conclusions: S100 A7 marker was expressed in 93.7% of laryngeal cancer cases, with higher positive correlation rates in more differentiated tumors and significantly lower rates of treatment failure. Scores had no impact on survival rates.
Resumo:
Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/ RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome.
Resumo:
Tumor cells induce the disruption of homeostasis between cellular and extracellular compartments to favor tumor progression. The expression of fibronectin (FN), a matrix glycoprotein, is increased in several carcinoma cell types, including renal cell carcinoma (RCC). RCC are highly vascularized tumors and are often amenable to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the modulation of FN gene expression by ES gene therapy in a murine metastatic renal cell carcinoma (mRCC) model. Balb/C mice bearing Renca cells were treated with NIH/3T3-LXSN cells or NIH/3T3-LendSN cells. At the end of the experiment, the ES serum levels were measured, and the FN gene expression was assessed using real-time PCR. The tissue FN was evaluated by western blotting and by immunofluorescence analysis. The ES serum levels in treated mice were higher than those in the control group (P < 0.05). ES treatment led to significant decreases at the FN mRNA (P < 0.001) and protein levels (P < 0.01). Here, we demonstrate the ES antitumor effect that is mediated by down-regulation of FN expression in mRCC. (C) 2012 Elsevier Masson SAS. All rights reserved.
Characterization of PAR1 and FGFR1 expression in invasive breast carcinomas: Prognostic significance
Resumo:
Breast cancer is the most common cause of cancer mortality among women worldwide. Among the several factors associated with breast cancer development, angiogenesis plays an essential role and has currently emerged as a potential diagnostic, prognostic and therapeutic target. Protease-activated receptor 1 (PAR1) and fibroblast growth factor receptor 1 (FGFR1) have important activities in tumor angiogenesis and progression. The aim of this study was to investigate the prognostic significance of these two receptors, hypothesising significant correlations between receptor expression in tumor angiogenesis and clinicopathological parameters customarily used in breast cancer prognosis and prediction. Formalin-fixed and paraffin-embedded samples of ductal invasive breast carcinomas were used to analyze the expression of PAR1 and FGFR1, in the tumor cells as well as in the tumor stroma, and further determine intratumoral microvessel density (iMVD) to quantify intratumoral angiogenesis. Correlations between PAR1 and FGFR1 expression in tumor cells and stroma, iMVD and several clinicopathological parameters and molecular markers used in breast cancer diagnosis have been addressed. The correlation between PAR1 and FGFR1 suggests an association of the two receptors with a more aggressive breast cancer phenotype and, consequently, a potential role during tumor progression. The results reported in the present study also emphasize the importance of microenvironmental factors in tumor progression, while precluding the positive association between iMVD and breast cancer aggressiveness.