959 resultados para Surface Organometallic Chemistry on Metals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration of CO2 in the atmosphere is projected to reach twice the preindustrial level by the middle of the 21st century. This increase will reduce the concentration of [CO3]2- of the surface ocean by 30% relative to the preindustrial level and will reduce the calcium carbonate saturation state of the surface ocean by an equal percentage. Using the large 2650 m3 coral reef mesocosm at the BIOSPHERE-2 facility near Tucson, Arizona, we investigated the effect of the projected changes in seawater carbonate chemistry on the calcification of coral reef organisms at the community scale. Our experimental design was to obtain a long (3.8 years) time series of the net calcification of the complete system and all relevant physical and chemical variables (temperature, salinity, light, nutrients, Ca2+,pCO2, TCO2, and total alkalinity). Periodic additions of NaHCO3, Na2CO3, and/or CaCl2 were made to change the calcium carbonate saturation state of the water. We found that there were consistent and reproducible changes in the rate of calcification in response to our manipulations of the saturation state. We show that the net community calcification rate responds to manipulations in the concentrations of both Ca2+ and [CO3]2- and that the rate is well described as a linear function of the ion concentration product, [Ca2+]0.69[[CO3]2-]. This suggests that saturation state or a closely related quantity is a primary environmental factor that influences calcification on coral reefs at the ecosystem level. We compare the sensitivity of calcification to short-term (days) and long-term (months to years) changes in saturation state and found that the response was not significantly different. This indicates that coral reef organisms do not seem to be able to acclimate to changing saturation state. The predicted decrease in coral reef calcification between the years 1880 and 2065 A.D. based on our long-term results is 40%. Previous small-scale, short-term organismal studies predicted a calcification reduction of 14-30%. This much longer, community-scale study suggests that the impact on coral reefs may be greater than previously suspected. In the next century coral reefs will be less able to cope with rising sea level and other anthropogenic stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close to unity). To see the effect of oxygen surface chemistry, selected samples having similar porosity but different oxygen contents were studied in the low relative pressure range. At low ethanol concentration (225 ppmv) adsorption is favored in oxidized samples, remarking the effect of the oxidizing treatment used (HNO3 is more effective than air) and the type of oxygen functionalities created (carboxyl and anhydride groups are more effective than phenolic, carbonyl and derivatives). To analyze the high relative pressure range, spherical and additional ACs were used. As the relative pressure of ethanol increases, the effect of oxygen-containing surface groups decreases and microporosity becomes the most important variable affecting the adsorption of ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO3]2-, there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO3]2-. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution of fac-[PtMe2(OMe)(H2O)(3)](+) (1) in aqueous perchloric acid underwent very slow hydrolysis of the Pt-OMe bond, over many, weeks. When chloride was added to a solution of 1, two interconverting isomers of [PtMe2(OMe)Cl(H2O)(2)] (with chloride trans to methyl) were formed, and with excess chloride, [PtMe2(OMe)Cl-2(H2O)](-) (both chloride ligands trans to methyl). This solution was stable at ambient temperature, but on heating, methanol was formed and [PtMe2Cl2(H2O)(2)] (both chloride ligands cis to methyl) was produced in the solution. It is proposed that this reaction proceeds via an intermediate complex with chloride bound trans to methoxide. Concentration gave solid [{PtMe2Cl2}n], whose identity was confirmed by conversion to [PtMe(2)Cl(2)py(2)] (pyridine, py, trans to methyl). With bromide and iodide, methoxide hydrolysis occurred at ambient temperature, more slowly with bromide than with iodide, to form solid [{PtMe2X2}(n)] without significant concentrations of [PtMe2X2(H2O)(2)] formed as an intermediate. The greater tendency for Pt-OMe bond to hydrolyse trans to halide compared with 1 was ascribed to the higher trans effect of the halide ligand compared with that of water. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface composition of food powders created from spray drying solutions containing various ratios of sodium caseinate, maltodextrin and soya oil have been analysed by Electron Spectroscopy for Chemical Analysis. The results show significant enrichment of oil at the surface of particles compared to the bulk phase, and (when the non-oil components only are considered), a significant surface enrichment of sodium caseinate also. The study found evidence of high levels (80%) of surface fat even on particles of food industry grade (92.5%) sodium caseinate containing only 1% fat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper immobilized on a functionalized silica support is a good catalyst for the homocoupling of terminal alkynes. The so-called Glaser-Hay coupling reaction can be run in air with catalytic amounts of base. The copper catalyst is active for multiple substituted alkynes, in both polar and non-polar solvents, with good to excellent yields (75-95%). Depending on the alkyne, full conversion can be achieved within 3-24 h. The catalyst was characterized by TGA, inductively coupled plasma and X-ray photoelectron spectroscopy. Leaching tests confirm that the catalyst is and remains heterogeneous. Importantly, the overall reaction requires only alkyne and oxygen (in this case, air) as reagents, making this a clean catalytic oxidative coupling reaction. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in biomaterials have enabled medical practitioners to replace diseased body parts or to assist in the healing process. In situations where a permanent biomaterial implant is used for a temporary application, additional surgeries are required to remove these implants once the healing process is complete, which increases medical costs and patient morbidity. Bio-absorbable materials dissolve and are metabolized by the body after the healing process is complete thereby negating additional surgeries for removal of implants. Magnesium alloys as novel bio-absorbable biomaterials, have attracted great attention recently because of their good mechanical properties, biocompatibility and corrosion rate in physiological environments. However, usage of Mg as biodegradable implant has been limited by its poor corrosion resistance in the physiological solutions. An optimal biodegradable implant must initially have slow degradation to ensure total mechanical integrity then degrade over time as the tissue heals. The current research focuses on surface modification of Mg alloy (MZC) by surface treatment and polymer coating in an effort to enhance the corrosion rate and biocompatibility. It is envisaged that the results obtained from this investigation would provide the academic community with insights for the utilization of bio-absorbable implants particularly for patients suffering from atherosclerosis. The alloying elements used in this study are zinc and calcium both of which are essential minerals in the human metabolic and healing processes. A hydrophobic biodegradable co-polymer, polyglycolic-co-caprolactone (PGCL), was used to coat the surface treated MZC to retard the initial degradation rate. Two surface treatments were selected: (a) acid etching and (b) anodization to produce different surface morphologies, roughness, surface energy, chemistry and hydrophobicity that are pivotal for PGCL adhesion onto the MZC. Additionally, analyses of biodegradation, biocompatibility, and mechanical integrity were performed in order to investigate the optimum surface modification process, suitable for biomaterial implants. The study concluded that anodization created better adhesion between the MZC and PGCL coating. Furthermore, PGCL coated anodized MZC exhibited lower corrosion rate, good mechanical integrity, and better biocompatibility as compared with acid etched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise in atmospheric CO2 has caused significant decrease in sea surface pH and carbonate ion (CO3-2) concentration. This decrease has a negative effect on calcification in hermatypic corals and other calcifying organisms. We report the results of three laboratory experiments designed specifically to separate the effects of the different carbonate chemistry parameters (pH, CO3-2, CO2 [aq], total alkalinity [AT], and total inorganic carbon [CT]) on the calcification, photosynthesis, and respiration of the hermatypic coral Acropora eurystoma. The carbonate system was varied to change pH (7.9-8.5), without changing CT; CT was changed keeping the pH constant, and CT was changed keeping the pCO2 constant. In all of these experiments, calcification (both light and dark) was positively correlated with CO3-2 concentration, suggesting that the corals are not sensitive to pH or CT but to the CO3-2 concentration. A decrease of ~30% in the CO3-2 concentration (which is equivalent to a decrease of about 0.2 pH units in seawater) caused a calcification decrease of about 50%. These results suggest that calcification in today's ocean (pCO2 = 370 ppm) is lower by ~20% compared with preindustrial time (pCO2 = 280 ppm). An additional decrease of ~35% is expected if atmospheric CO2 concentration doubles (pCO2 = 560 ppm). In all of these experiments, photosynthesis and respiration did not show any significant response to changes in the carbonate chemistry of seawater. Based on this observation, we propose a mechanism by which the photosynthesis of symbionts is enhanced by coral calcification at high pH when CO2(aq) is low. Overall it seems that photosynthesis and calcification support each other mainly through internal pH regulation, which provides CO3-2 ions for calcification and CO2(aq) for photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32-] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32-] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32-], indicating that [HCO3-] rather than [CO32-] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32-] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 µmol kg-1 [CO32-] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better understand the physiological processes and their underlying genetics that govern inorganic carbon assimilation for calcification.