Environmental controls on the Emiliania huxleyi calcite mass


Autoria(s): Horigome, Mariana Tatsumi; Ziveri, Patrizia; Grelaud, Michaël; Baumann, Karl-Heinz; Marino, Gianluca; Mortyn, PG
Cobertura

MEDIAN LATITUDE: -28.808414 * MEDIAN LONGITUDE: 2.909865 * SOUTH-BOUND LATITUDE: -53.220000 * WEST-BOUND LONGITUDE: -24.248300 * NORTH-BOUND LATITUDE: 1.790000 * EAST-BOUND LONGITUDE: 40.868333 * DATE/TIME START: 1989-03-13T00:00:00 * DATE/TIME END: 2004-01-05T00:00:00 * MINIMUM ELEVATION: -5262.0 m * MAXIMUM ELEVATION: -1017.0 m

Data(s)

07/05/2014

Resumo

Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO3]2-, there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO3]2-. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.

Formato

text/tab-separated-values, 3410 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.832340

doi:10.1594/PANGAEA.832340

Idioma(s)

en

Publicador

PANGAEA

Relação

Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Horigome, Mariana Tatsumi; Ziveri, Patrizia; Grelaud, Michaël; Baumann, Karl-Heinz; Marino, Gianluca; Mortyn, PG (2014): Environmental controls on the Emiliania huxleyi calcite mass. Biogeosciences, 11(8), 2295-2308, doi:10.5194/bg-11-2295-2014

Palavras-Chave #06MT41_3; Age, maximum/old; Agulhas Basin; Agulhas Current; Alkalinity, total; Angola Basin; ANT-XI/4; Aragonite saturation state; Bicarbonate ion; Brazil Basin; calcification; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); CALYPSO; Calypso Corer; Cape Basin; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CD154; CD154-01-1K; CD154-02-3K; CD154-03-5K; CD154-04-6K; CD154-05-7K; CD154-07-7PK; CD154-09-9K; CD154-10-10K; CD154-15-13K; CD154-15-14K; CD154-16-15K; CD154-17-17K; CD154-18-18K; CD154-20-20K; CD154-23-24K; CD154-24-25K; Central South Atlantic; Charles Darwin; Chlorophyll a, interpolated; Cluster type; Conrad Rise; East Brazil Basin; Estimated by measuring brightness in cross-polarized light (birefringence); Event label; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); GeoB1112-3; GeoB1203-2; GeoB1208-1; GeoB1217-1; GeoB1403-2; GeoB1405-7; GeoB1413-2; GeoB1414-2; GeoB1415-1; GeoB1417-1; GeoB1418-1; GeoB1419-1; GeoB1420-1; GeoB1901-1; GeoB1902-3; GeoB1903-1; GeoB1904-1; GeoB1905-1; GeoB1906-1; GeoB1907-1; GeoB2213-1; GeoB5112-5; GeoB5115-2; GeoB5121-2; GeoB5130-1; GeoB5134-1; GeoB5136-2; GeoB5137-1; GeoB5140-3; GeoB6402-9; GeoB6403-4; GeoB6406-1; GeoB6410-1; GeoB6411-4; GeoB6412-1; GeoB6417-2; GeoB6418-3; GeoB6419-1; GeoB6421-2; GeoB6425-1; GeoB6429-1; Giant box corer; GIK17836-1; GIK17843-1; GIK17851-1; GIK17862-1; GIK17866-1; GIK17884-1; GKG; Gravity corer (Kiel type); Guinea Basin; Hierarchical cluster analysis (HCA); Indian-Antarctic Ridge; KAL; Kasten corer; Length; M12/1; M16/1; M23/3; M41/3; M46/4; M9/4; Marion Dufresne; Mass; Mass, standard deviation; MD02-2594; MD128; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Meteor (1986); MIC; Mid Atlantic Ridge; MiniCorer; MUC; MultiCorer; multiple factors; Nitrate concentration, water, interpolated; Northern Guinea Basin; nutrients; OA-ICC; Ocean Acidification International Coordination Centre; paleo; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate concentration, water, interpolated; phytoplankton; Polarstern; PS2557-2; PS2558-1; PS2560-3; PS2561-1; PS2563-3; PS2565-2; PS2568-3; PS2569-1; PS2570-1; PS2606-3; PS2610-1; PS2611-2; PS30; PS30/004; PS30/013; PS30/023; PS30/030; PS30/043; PS30/051; PS30/104; PS30/105; PS30/106; PS30/144; PS30/155; PS30/156; Salinity, interpolated; Sample code/label; Sedimentation rate; SL; SO84; Sonne; South Atlantic; Southern Ocean; South Indian Ridge, South Indian Ocean; Species; ST. HELENA HOTSPOT; SWAF; temperature; Temperature, water, interpolated; Walvis Ridge; West Angola Basin; Width
Tipo

Dataset