882 resultados para Structure-property relationship


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5-fluorouracil (FUra) has been shown to modulate the aminoacylation function of rat liver tRNA. The present study was aimed at studying the structure-function relationship of FUra-substituted tRNA. Male Wistar rats (2-3 month old) were given a single i.p. injection of FUra at 50, 250, or 500 mg/kg body wt. and FUra-substituted total liver tRNA, i.e. tRNA(FUra50, 250, and 500, respectively, were isolated 3 h later. Normal tRNA (tRNA(N)) was isolated from saline-treated control rats. Thermal denaturation studies showed higher melting temperatures for tRNA(FUra) compared to tRNA(N). Heat denaturation followed by renaturation of total tRNA did not affect the activity of tRNA(N) and tRNA(FUra50), where as tRNA(FUra250 and 500) lost 35% and 72% of activity, respectively, compared to the corresponding group of non-denatured tRNA. Antibodies specific to rat liver tRNA recognized normal and FUra-substituted tRNA in the order of tRNA(N) > tRNA(FUra50) > or = tRNA(FUra250) > tRNA(FUra500) in an avidin-biotin micro-enzyme linked immunosorbant assay. tRNA(N) or tRNA(FUra50) preincubated with tRNA antiserum showed 74% and 59% of aminoacylation activity, respectively, compared to that of corresponding tRNA preincubated with normal rabbit IgG. However, activities of similarly treated tRNA(FUra250 and 500) were not affected. The observations of possible changes in the secondary structure of rat liver tRNA upon incorporation of FUra are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In last 40 years, catalysis for NO (x) removal from exhaust gas has received much attention to achieve pollution free environment. CeO(2) has been found to play a major role in the area of exhaust catalysis due to its unique redox properties. In last several years, we have been exploring an entirely new approach of dispersing noble metal ions in CeO(2) and TiO(2) for redox catalysis. We have extensively studied Ce(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh), Ce(1-x-y) A (x) M (y) O(2-delta) (A = Ti, Zr, Sn, Fe; M = Pd, Pt) and Ti(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh, Ru) catalysts for exhaust catalysis especially NO reduction and CO oxidation, structure-property relation and mechanism of catalytic reactions. In these catalysts, lower valent noble metal ion substitution in CeO(2) and TiO(2) creates noble metal ionic sites and oxide ion vacancy. NO gets molecularly adsorbed on noble metal ion site and dissociatively adsorbed on oxide ion vacancy site. Dissociative chemisorption of NO on oxide ion vacancy leads to preferential conversion of NO to N(2) instead of N(2)O over these catalysts. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) are much more catalytically active than conventional nano crystalline noble metal catalysts especially for NO reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type II diabetes mellitus is a chronic metabolic disorder that can lead to serious cardiovascular, renal, neurologic, and retinal complications. While several drugs are currently prescribed to treat type II diabetes, their efficacy is limited by mechanism-related side effects (weight gain, hypoglycemia, gastrointestinal distress), inadequate efficacy for use as monotherapy, and the development of tolerance to the agents. Consequently, combination therapies are frequently employed to effectively regulate blood glucose levels. We have focused on the mitochondrial sodium-calcium exchanger (mNCE) as a novel target for diabetes drug discovery. We have proposed that inhibition of the mNCE can be used to regulate calcium flux across the mitochondrial membrane, thereby enhancing mitochondrial oxidative metabolism, which in turn enhances glucose-stimulated insulin secretion (GSIS) in the pancreatic beta-cell. In this paper, we report the facile synthesis of benzothiazepines and derivatives by S-alkylation using 2-aminobenzhydrols. The syntheses of other bicyclic analogues based on benzothiazepine, benzothiazecine, benzodiazecine, and benzodiazepine templates are also described. These compounds have been evaluated for their inhibition of mNCE activity, and the results from the structure-activity relationship (SAR) studies are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the years, crystal engineering has transformed into a mature and multidisciplinary subject. New understanding, challenges, and opportunities have emerged in the design of complex structures and structure-property evaluation. Revolutionary pathways adopted by many leaders have shaped and directed this subject. In this short essay to celebrate the 60th birthday of Prof. Gautam R. Desiraju, we, his current research group members, contemplate the development of some of the topics explored by our group in the context of the overall subject. These topics, though not entirely new, are of significant interest to the crystal engineering community.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are many biomechanical challenges that a female insect must meet to successfully oviposit and ensure her evolutionary success. These begin with selection of a suitable substrate through which the ovipositor must penetrate without itself buckling or fracturing. The second phase corresponds to steering and manipulating the ovipositor to deliver eggs at desired locations. Finally, the insect must retract her ovipositor fast to avoid possible predation and repeat this process multiple times during her lifetime. From a materials perspective, insect oviposition is a fascinating problem and poses many questions. Specifically, are there diverse mechanisms that insects use to drill through hard substrates without itself buckling or fracturing? What are the structure-property relationships in the ovipositor material? These are some of the questions we address with a model system consisting of a parasitoid fig wasp - fig substrate system. To characterize the structure of ovipositors, we use scanning electron microscopy with a detector to quantify the presence of transition elements. Our results show that parasitoid ovipositors have teeth like structures on their tips and contain high amounts of zinc as compared to remote regions. Sensillae are present along the ovipositor to aid detection of chemical species and mechanical deformations. To quantify the material properties of parasitoid ovipositors, we use an atomic force microscope and show that tip regions have higher modulus as compared to remote regions. Finally, we use videography to show that ovipositors buckle during oviposition and estimate the forces needed to cause substrate boring based on Euler buckling analysis. Such methods may be useful for the design of functionally graded surgical tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this Letter, we report the structure activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-(phenyl)sulfonyl]-2-(4-nitrophenoxy)methyl]-1H-benzim idazoles derivatives 7(a-j) and 8(a j) synthesized in good yields and characterized by H-1 NMR, C-13 NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coil and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical functionalization of various hydrocarbons, such as coronene, corannulene, and so forth, shows good promise in electronics applications because of their tunable optoelectronic properties. By using quantum chemical calculations, we have investigated the changes in the corannulene buckybowl structure, which greatly affect its electronic and optical properties when functionalized with different electron-withdrawing imide groups. We find that the chemical nature and position of functional groups strongly regulate the stacking geometry, -stacking interactions, and electronic structure. Herein, a range of optoelectronic properties and structure-property relationships of various imide-functionalized corannulenes are explored and rationalized in detail. In terms of carrier mobility, we find that the functionalization strongly affects the reorganization energy of corannulene, while the enhanced stacking improves hopping integrals, favoring the carrier mobility of crystals of pentafluorophenylcorannulene-5-monoimide. The study shows a host of emerging optoelectronic properties and enhancements in the charge-transport characteristics of functionalized corannulene, which may find possible semiconductor and electronics applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naive Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (approximate to 85%) and specific (approximate to 95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219-1234. (c) 2013 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shear induced crystallization in PVDF/PMMA blends, especially at higher fractions of PMMA, can be quite interesting in understanding the structure-property correlation and processing of these blends. In a recent submission (Phys. Chem. Chem. Phys., 2014, 16, 2693-2704), we clearly demonstrated, using dielectric spectroscopy, that the origin of segmental relaxations concerning the crystalline segments of PVDF in PVDF/PMMA blends in the presence of MWNTs (multiwalled nanotubes) was strongly contingent on the size of the crystallite. We now understand that the fraction of PMMA in the blends governs the origin of polymorphism in PVDF. This motivated us to systematically study the effect of shear on the crystallization behavior of PVDF especially in blends with different polymorphic forms of PVDF. Two model blends were selected; one with a mixture of alpha and beta crystals and the other predominantly rich in alpha crystals. Initially, physical ageing, at different oscillation frequencies (1 rad s(-1) and 0.1 rad s(-1)), was monitored by melt rheology and subsequently, the effect of steady shear was probed in situ without changing the history of the samples. Intriguingly, the rate of crystallization was observed to be significantly higher for higher oscillation frequencies, which essentially suggest that shear has induced crystallization in the blends. More interestingly, the effect of steady shear was more pronounced in the blends rich in alpha crystals (bigger crystallites as observed from SAXS) and at lower oscillation frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation of a series of seven angular ``V'' shaped NPIs (1-7) is presented. The effect of substitution of these structurally similar NPIs on their photophysical properties in the solution-state and the solid-state is presented and discussed in light of experimental and computational findings. Compounds 1-7 show negligible to intensely strong emission yields in their solid-state depending on the nature of substituents appended to the oxoaryl moiety. The solution and solid-state properties of the compounds can be directly correlated with their structural rigidity, nature of substituents and intermolecular interactions. The versatile solid-state structures of the NPI siblings are deeply affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric pi-pi stacking interactions in their solid-state which can further extend in a parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4' substituents. Structural investigations including Hirshfeld surface analysis methods reveal that where strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in their solid-states. Furthermore, DFT computational studies were utilized to understand the molecular and cumulative electronic behaviors of the NPIs. The comprehensive studies provide insight into the condensed-state luminescence of aggregationprone small molecules like NPIs and help to correlate the structure-property relationships.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.