982 resultados para Stable Autoregressive Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001, doi:10.1126/science.1059412). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005, doi:10.1029/2004PA001071). Various models (sensu Driscoll and Haug, 1998, doi:10.1126/science.282.5388.436) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, doi:10.1007/s00382-007-0265-6), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope measurements on the planktonic foraminifer Globigerinoides ruber (white) have been carried out on a number of selected deep-seas sediment cores from the South Lau and Norlh Fiji Basins. The d18O-curves show good correlation with the inter-ocean oraphic correlation composite d18O-record of the standard reference section (Prell et al. 1986), which, in combination with the chronostratigraphic classifications of Herterich & Sarnthein (1984, modified) and Imbrie et al. 1984), allows a detailed dating of the sedimentary sequences. The deepest layers in core no. 119 (southern Lau Basin) could be assigned to Isotope Stage 24. Measurements made on bulk carbonate in two cores show a much higher glacial-interglacial amplitude, allowing the general identification of the conventional oxygen isotope stages. The d13C-values of the benthic foraminifer Cibicidoides wuellerstorfi show progressively lighter values northwards reflecting an increasing contribution of the isotopically lighter CO2 from the remineralisation of organic matter during the general northward movement of the deep water masses. Cyclicities in the sedimentation rates were observed in core nos. 117 and 119 (both southern Lau Basin) where the interglacials exhibit higher levels than the glacials. Calculated new or export paleoproductivity show that the glacials had higher productivity in the euphotic zone. From the oxygen isotope stratigraphy, the five ash layers in core nos. 117 and 119 could be dated as about 530 ka B.P. in Stage 14, 695 ka B.P. in Stage 18, 775 ka B.P. in Stage 21, 790 ka B.P. and 825 ka B.P. in Stage 22. Carbonate dissolution occurred during stages 5, 8 and 10 to 12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997, doi:10.1029/97JC00880]. During interstadials, summer sea surface temperatures (SSTsu) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ~36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SSTsu dropped to 2°-4°C, in phase with SSS drops by ~1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic ?18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) cores permit us to extend the study of millennial-scale climate variability beyond the time period that is generally accessible for piston cores (i.e., the last glacial cycle). ODP Leg 177 provided for the first time continuous high sedimentation rate cores along a north-south transect from 41°to 53°S across the main subdivisions of the Southern Ocean (Shipboard Scientific Party, 1999, doi:10.2973/odp.proc.ir.177.101.1999). The main purpose of this drilling was to investigate the Pleistocene and Holocene paleoceanographic history of this region, documented in the sedimentary records. ODP Sites 1094, 1093, 1091, and 1089 accumulated throughout the Pleistocene at rates >10 cm/k.y. and are the most detailed Pleistocene climatic records ever retrieved from the Southern Ocean. These sections provide a unique opportunity to fill an important gap in the knowledge of the paleoclimatic evolution of the high southern latitude regions. The composite sections at each site were generated shipboard using magnetic susceptibility, gamma ray attenuation (GRA) density, and reflectance data to correlate the drill holes and splice together an optimal (complete and undisturbed) record of the sedimentary sequence at each site. A preliminary magnetic polarity stratigraphy was generated on the 'archive' halves of the core sections from each hole, using the shipboard pass-through magnetometer after demagnetization at a single peak alternating field (Shipboard Scientific Party, 1999). During July 1998, we sampled core sections spanning the mid-Pleistocene interval (0.65-1.2 Ma) from Sites 1094, 1093, and 1091 at the ODP Bremen Core Repository and have since then analyzed the stable isotopic ratios of foraminifers in samples from Sites 1094 and 1091. Our goals for these studies are to establish detailed chronology for the mid-Pleistocene Southern Ocean records from Leg 177 using high-resolution stable isotope analyses, and furthermore, to trace the evolution of millennial-scale variability in proxy records from older glacial and interglacial periods characterized by higher-frequency variation. Here, we report on our stratigraphic results to date and describe the laboratory methods employed for sample preparation and stable isotope analysis. Furthermore, we provide tab-delimited text files of the age models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western South Atlantic boundary currents represent a sensitive system within the global thermohaline circulation (THC). We investigated the impact of deglacial THC changes on the western tropical Atlantic studied in six high resolution sediment cores from the upper continental slope of Brazil. The stratigraphy of the cores is mainly based on 14C AMS dating of monospecific foraminiferal samples. Changes in the upper layer tropical ocean during the deglaciation are inferred from stable oxygen isotope measurements on planktic and benthic foraminifera. Variations in the delta18O residuals are assumed to be mainly temperature related. During the Oldest and Younger Dryas cooling periods, two major deglacial THC disturbances are reported from North Atlantic sediment cores. Concomitant to the repeated THC slowdown, we observe an upper layer warming in the tropical ocean. A reduced northward heat export from the tropical areas during these periods (weak North Brazil Current) is additionally reflected by low meridional gradients in the stable oxygen records. This generally agrees with results from coupled ocean atmosphere models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ever since its discovery, Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) has been considered as one of the "little brothers" of the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) as it displays similar characteristics including abrupt warming, ocean acidification, and biotic shifts. One of the remaining key questions is what effect these lesser climate perturbations had on ocean circulation and ventilation and, ultimately, biotic disruptions. Here we characterize ETM2 sections of the NE Atlantic (Deep Sea Drilling Project Sites 401 and 550) using multispecies benthic foraminiferal stable isotopes, grain size analysis, XRF core scanning, and carbonate content. The magnitude of the carbon isotope excursion (0.85-1.10 per mil) and bottom water warming (2-2.5°C) during ETM2 seems slightly smaller than in South Atlantic records. The comparison of the lateral d13C gradient between the North and South Atlantic reveals that a transient circulation switch took place during ETM2, a similar pattern as observed for the PETM. New grain size and published faunal data support this hypothesis by indicating a reduction in deepwater current velocity. Following ETM2, we record a distinct intensification of bottom water currents influencing Atlantic carbonate accumulation and biotic communities, while a dramatic and persistent clay reduction hints at a weakening of the regional hydrological cycle. Our findings highlight the similarities and differences between the PETM and ETM2. Moreover, the heterogeneity of hyperthermal expression emphasizes the need to specifically characterize each hyperthermal event and its background conditions to minimalize artifacts in global climate and carbonate burial models for the early Paleogene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (d13C and d15N) measured in whiskers collected from their newborn pups. The d15N values in the whiskers of individual seals ranged from 11.95 to 17.45 per mil, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed stable isotopic and calcium carbonate records (with a sampling resolution of 3000 yr.) from the middle Miocene section of hydraulic piston corer (HPC) Hole 574A provide a sequence that records the major shift in the oxygen isotopic composition of the world's oceans that occurred at about 14 Ma. The data suggest that this transition was rapid and spans about 30,000 yr. of sediment deposition. In intervals before and after the shift, the mean d18O values are characterized by a constant mean with a high degree of variability. The degree of variability in both the d18O and d13C records is comparable to that observed for the Pliocene and earliest Pleistocene and does not show a significant change before or after the major shift in the d18O record. Whereas the oxygen isotopic record is characterized by relatively stable mean values before and after the middle Miocene event, the d13C record shows a number of significant offsets in the mean value separated by intervals of high-frequency variations. Time and frequency domain analysis of all records from Hole 574A indicate that the frequency components shown to be related to orbital changes in the Pleistocene record are also present in the middle Miocene. The high variability observed in the Site 574 isotopic records places important constraints on models describing the role of formation of the Antarctic ice sheet during the middle Miocene climatic transitions. Thus, HPC Hole 574A provides a valuable sequence for detailed study of climatic variability during an important time in the Earth's history, although we cannot provide a definitive explanation of the major oxygen isotopic event of the middle Miocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During ODP Leg 111 Hole 504B was extended 212 m deeper into the sheeted dikes of oceanic Layer 2, for a total penetration of 1288 m within basement. Study of the mineralogy, chemistry, and stable isotopic compositions of the rocks recovered on Leg 111 has confirmed and extended the previous model for hydrothermal alteration at the site: axial greenschist hydrothermal metamorphism was followed by seawater recharge and subsequent off-axis alteration. The dikes are depleted in 18O (mean delta18O = +5.1 ? +/- 0.6 ?) relative to fresh mid-ocean ridge basalt. Oxygen isotopic data on whole rocks and isolated secondary minerals indicate temperatures during axial metamorphism of 250°-350°C and water/rock ratios about one. Increasing amounts of actinolite with depth in the dike section, however, suggest that temperatures increased downward in the dikes. Pyrite + pyrrhotite + chalcopyrite + magnetite was the stable sulfide + oxide mineral assemblage during axial alteration, but these minerals partly re-equilibrated later at temperatures less than 200°C. The dikes sampled on Leg 111 contain an average of 500 ppm sulfur, slightly lower than igneous values. The delta34S values of sulfide average 0?, which indicates the presence of basaltic sulfide and incorporation of little or no seawater-derived sulfide into the rocks. These data are consistent with models for the presence of rock-dominated sulfur in deep hydrothermal fluids. The presence of anhydrite at 1176 m within basement indicates that unaltered seawater can penetrate to significant depths in the crust during recharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope data for upper Turonian planktonic foraminifera at Deep Sea Drilling Project Site 511 (Falkland Plateau, 60°S paleolatitude) exhibit an ~2 per mil excursion to values as low as -4.66 per mil (Vienna Peedee belemnite standard; PDB) coincident with the warmest tropical temperature estimates yet obtained for the open ocean. The lowest planktonic foraminifer d18O values suggest that the upper ocean was as warm as 30-32°C. This is an extraordinary temperature for 60°S latitude but is consistent with temperatures estimated from apparently coeval mollusc d18O from nearby James Ross Island (65°S paleolatitude). Glassy textural preservation, a well-defined depth distribution in Site 511 planktonics, low sediment burial temperature (~32°C), and lack of evidence of highly depleted pore waters argue against diagenesis (even solid state diffusion) as the cause of the very depleted planktonic values. The lack of change in benthic foraminifer d18O suggests brackish water capping as the mechanism for the low planktonic d18O values. However, mixing ratio calculations show that the amount of freshwater required to produce a 2 per mil shift in ambient water would drive a 7 psu decrease in salinity. The abundance and diversity of planktonic foraminifera and nannofossils, high planktonic:benthic ratios, and the appearance of keeled foraminifera argue against lower-than-normal marine salinities. Isotope calculations and climate models indicate that we cannot call upon more depleted freshwater d18O to explain this record. Without more late Turonian data, especially from outside the South Atlantic basin, we can currently only speculate on possible causes of this paradoxical record from the core of the Cretaceous greenhouse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.