942 resultados para Sperm injections, intracytoplasmic
Resumo:
Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.
Resumo:
STUDY QUESTION Is there an association between high levels of sperm DNA damage and miscarriage?SUMMARY ANSWERMiscarriage rates are positively correlated with sperm DNA damage levels.WHAT IS KNOWN ALREADYMost ejaculates contain a subpopulation of sperm with DNA damage, also referred to as DNA fragmentation, in the form of double or single-strand breaks which have been induced in the DNA prior to or following ejaculation. This DNA damage may be particularly elevated in some subfertile men, hence several studies have examined the link between sperm DNA damage levels and conception and miscarriage rates.STUDY DESIGN, SIZE, DURATIONA systematic review and meta-analysis of studies which examined the effect of sperm DNA damage on miscarriage rates was performed. Searches were conducted on MEDLINE, EMBASE and the Cochrane Library without any language restrictions from database inception to January 2012.PARTICIPANTS/MATERIALS, SETTING, METHODSWe used the terms 'DNA damage' or 'DNA fragmentation' combined with 'miscarriage', 'abortion' or 'pregnancy' to generate a set of relevant citations. Data extraction was performed by two reviewers. Study quality was assessed using the Newcastle-Ottawa Scale. Meta-analysis of relative risks of miscarriage was performed with a random effects model. Subgroup analyses were performed by the type of DNA damage test, whether the sperm examined were prepared or from raw semen and for pregnancies resulting from IVF or ICSI treatment.MAIN RESULTS AND THE ROLE OF CHANCEWe identified 16 cohort studies (2969 couples), 14 of which were prospective. Eight studies used acridine orange-based assays, six the TUNEL assay and two the COMET assay. Meta-analysis showed a significant increase in miscarriage in patients with high DNA damage compared with those with low DNA damage [risk ratio (RR) = 2.16 (1.54, 3.03), P <0.00001)]. A subgroup analysis showed that the miscarriage association is strongest for the TUNEL assay (RR = 3.94 (2.45, 6.32), P <0.00001).LIMITATIONS, REASONS FOR CAUTIONThere is some variation in study characteristics, including the use of different assays and different thresholds for DNA damage and the definition of pregnancy loss.WIDER IMPLICATIONS OF THE FINDINGSThe use of methods which select sperm without DNA damage for use in assisted conception treatment may reduce the risk of miscarriage. This finding indicates that assays detecting DNA damage could be considered in those suffering from recurrent pregnancy loss. Further research is necessary to study the mechanisms of DNA damage and the potential therapeutic effects of antioxidant therapy.STUDY FUNDING/COMPETING INTEREST(S)None.
Resumo:
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
Resumo:
In this debate article, I am going to set out the case that sperm DNA fragmentation testing is essential in current day fertility management because-
• Our current semen analysis testing is unfit for purpose
• Sperm DNA damage testing has strong associations with every fertility check point
• Sperm DNA damage testing has strong associations with miscarriage
• Sperm DNA testing can explain ‘unexplained’ infertility
• There are reasons why sperm with poor DNA are successful in ICSI
• There are no non-invasive sperm function tests that provide the same information
• We need to take a fresh look at the ‘evidence’ against sperm DNA testing
• We have no reason to wait. There are benefits for clinics and couples alike.
Resumo:
Abstract Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes.
It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage
and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major
track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body
of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the
strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in
the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract,
the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials
addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.
Resumo:
OBJECTIVE:
"Blind" shoulder injections are often inaccurate and infiltrate untargeted structures. We tested a hypothesis that optimizing certain anatomical and positional factors would improve accuracy and reduce dispersal.
METHODS:
We evaluated one subacromial and one glenohumeral injection technique on cadavers.
RESULTS:
Mean accuracy was 91% for subacromial-targeted and 74 and 91% (worst- and best-case scenarios) for joint-targeted injections. Mean dispersal was 19% for subacromial-targeted and 16% for joint-targeted injections. All results bettered those reported previously.
CONCLUSION:
These "optimized" techniques might improve accuracy and limit dispersal of blind shoulder injections in clinical situations, benefiting efficacy and safety. However, evaluation is required in a clinical setting.
Resumo:
Part 1: The alkaline single-cell gel electrophoresis (comet) assay was used to analyse the integrity and DNA content of exfoliated cells extracted from bladder washing specimens from 9 transitional cell carcinoma patients and 15 control patients. DNA damage, as expressed by % tail DNA and tail moment values, was observed to occur in cells from both control and bladder cancer samples. The extent of the damage was, however, found to be significantly greater in the cancer group than in the control group. Comet optical density values were also recorded for each cell analysed in the comet assay and although differences observed between tumour grades were not found to be statistically significant, the mean comet optical density value was observed to be greater in the cancer group than in the control population studied, These preliminary results suggest that the comet assay may have potential as a diagnostic tool and as a prognostic indicator in transitional cell carcinoma, Part 2: Baseline DNA damage in sperm cells from 13 normozoospermic fertile males, 17 normozoospermic infertile males and 11 asthenozoospermic infertile males were compared using a modified alkaline comet assay technique. No significant difference in the level of baseline DNA damage was observed between the 3 categories of sperm studied; however the untreated sperm cells were observed to display approximately 20% tail DNA. This is notably higher than the background DNA damage observed in somatic cells where the % tail DNA is normally less than 5%. Sperm from the 3 groups of men studied were also compared for sensitivity to DNA breakage, using the modified alkaline comet assay, following X-ray irradiations (5, 10 and 30 Gy) and hydrogen peroxide treatments (40, 100 and 200 mu M). Significant levels of X-ray-induced damage were found relative to untreated control sperm in the two infertile groups following 30 Gy irradiation. Significant damage in hydrogen peroxide-treated sperm was observed in sperm from fertile samples, at 200 mu M and in infertile samples at 100- and 200-mu M doses relative to controls. These results therefore indicate that fertile sperm samples are more resistant to X-ray- and hydrogen peroxide-induced DNA breakage than infertile samples. Further studies involving greater numbers of individuals are currently in progress to confirm these findings.
Resumo:
A análise da mobilidade seminal é uma ferramenta importante para reprodução em aquacultura. Esta é uma técnica in vitro que auxilia a estabulação, manutenção e selecção de lotes de reprodutores. A análise de mobilidade seminal pode tornar-se potencialmente uma ferramenta para o melhoramento das condições do ambiente de fertilização. A utilização do software CASA (Computer Assisted Sperm Analysis) revolucionou a descrição e quantificação específica da mobilidade seminal. A maioria da informação recolhida sobre mobilidade de sémen de peixes baseia-se em espécies de água doce, pelo que é crucial conhecer as condições óptimas de activação da mobilidade de espermatozóides para novas espécies de de água salgada de interesse em aquacultura tal como Solea senegalensis. A optimização das condições de fertilização desta espécie é particularmente importante já que os lotes de reprodutores em cativeiro podem desenvolver disfunções reprodutoras. Este trabalho teve como objectivo realizar a avaliação das condições óptimas de activação da mobilidade do sémen em S. senegalensis em termos de temperatura, salinidade e pH. O segundo objectivo foi realizar a avaliação da influência de fluido ovárico homólogo (S. senegalensis) e heterólogo (Epinephelus marginatus) na mobilidade seminal de S. senegalensis. Deste modo foram realizados dois conjuntos de experiências: 1) mobilidade de sémen de 7 machos analisado através do CASA em diferentes temperaturas, salinidades e pH, 2) mobilidade de sémen de 8 machos activados na presença de diferentes concentrações de fluido ovárico. Os parâmetros do CASA foram registados e posteriormente analisados através de médias e cluster analysis. Concluiu-se que temperaturas mais elevadas (20 ºC) e baixas salinidades (25 ‰ e 30 ‰) da solução de activação ocorre um melhoramento das características de mobilidade seminal, tal como a velocidade. A presença de fluido ovárico em baixas concentrações melhora as características da mobilidade seminal assim como a longevidade dos espermatozóides. O fluido ovárico é consequentemente um factor que estimula a mobilidade seminal que tem sido negligenciado em estudos anteriores. Este estudo demonstrou que durante a época de reprodução a temperatura da água (20 ºC) e a salinidade (25 ‰ e 30 ‰) no tanque são os principais factores que melhoram a activação da mobilidade do sémen, sendo consequentemente uma contribuição importante para compreender a dinâmica do processo de fertilização em S. senegalensis.
Resumo:
Dissertação de mestrado, Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015