953 resultados para Silicon wet etching
Resumo:
We have compared the searching of the presence of "honeycomb" structures by direct microscopy on wet mount preparations with the direct immunofluorescence (DIF) for the diagnosis of Pneumocystis carinii pneumonia (PCP) in 115 bronchoalveolar (BAL) fluids. The samples belonged to 115 AIDS patients; 87 with presumptive diagnosis of PCP and 28 with presumptive diagnosis other than PCP. The obtained results were coincident in 114 out of 115 studied samples (27 were positive and 87 negative) with both techniques. A higher percentage of positive results (32.18%) among patients with presumptive diagnosis of PCP with respect to those with presumptive diagnosis other than PCP (3.57%) was observed. One BAL fluid was positive only with DIF, showed scarce and isolated P. carinii elements and absence of typical "honeycomb" structures. The searching for "honeycomb" structures by direct microscopy on wet mount preparations could be considered as a cheap and rapid alternative for diagnosis of PCP when other techniques are not available or as screening test for DIF. This method showed a sensitivity close to DIF when it was applied to BAL fluids of AIDS patients with poor clinical condition and it was performed by an experienced microscopist.
Resumo:
Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.
Resumo:
Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.
Resumo:
Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chitosan and gold nanoparticles coating was produced allied with electrodes modification by electrodeposition with PEDOT/PSS in order to reduce the im-pedance at 1kHz. Using a dip-coating mechanism, the silicon probe was coated and then charac-terized both morphologically and electrochemically, with focus on the stability of post-surgery performance in anesthetized rodents. Since not only the inflammatory response analysis is vital, the electrodes recording degradation over time was also studied. The produced film presented a thickness of approximately 50 μm that led to an increase of impedance of less than 20 kΩ in average. On a 3 week chronic implant, the impedance in-crease on the coated probe was of 641 kΩ, compared with 2.4 MΩ obtained for the uncoated probe. The inflammatory response was also significantly reduced due to the biocompatible film as proved by histological tests.
Resumo:
One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.
Resumo:
We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.
Growth of semi-polar GaN on high index silicon (11h) substrates by metal organic vapor phase epitaxy
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014
Resumo:
n.s. no.14(1983)
Resumo:
The taxonomic composition, observed and estimated species richness, and patterns of community structure of arboreal spider assemblages in eleven sites surrounding the "Banhado Grande" wet plain in the state of Rio Grande do Sul, Brazil, are presented. These sites represent three different vegetational types: hillside (four sites), riparian (five sites) and flooded forests (two sites). The spiders were captured by beating on foliage and "aerial litter". A sample was defined as the result of beating on twenty bushes, tree branches or "aerial litter" clusters, which roughly corresponds to one-hour search effort per sample. Fifty five samples (five per site) were obtained, resulting in an observed richness of 212 species present as adult or identifiable juveniles. The total richness for all samples was estimated to be between 250 (Bootstrap) to 354 species (Jackknife 2). Confidence intervals of both sample and individual-based rarefaction curves for each vegetation type clearly indicated that flooded forest is the poorest vegetation type with respect to spider species richness, with hillside and riparian forests having a similar number of species. The percentage complementarity between the eleven sites indicated that all sites contain a distinct set of species, irrespective of their vegetation types. Nevertheless, the spider assemblages in riparian and hillside forests are more similar with respect to each other than when compared to flooded forest. Both cluster and nonmetric multidimensional scaling analyses showed no strong correspondence between the spider arboreal fauna and the three vegetation types. Moreover, a Mantel test revealed no significant association between species composition and geographic distance among sites.
Resumo:
Estudi elaborat a partir d’una estada al Paul Scherrer Institut del Maig a l’Octubre del 2006 amb l’ajuda i supervisió dels Dr. Konstantins Jefimovs i Dr. Christian David. Focalitzar raigs X tous és una necessitat essencial per al microanàlisis, la microscopia, i fer imatges en moltes Instal·lacions de Radiació Sincrotró. Les Lents Zonals de Fresnel (FZP, de la denominació anglesa “Fresnel Zone Plates”) han demostrat donar uns punts focals amb una resolució espacial destacada i una baixa il·luminació de fons. Tanmateix, la fabricació de FZP és complexa i no totalment reproduïble. A més a més, el temps de vida de les FZP és força curt, ja que estant situades sobre membranes de nitrur de silici molt fines i altament absorbents. Per tant, hem fet esforços per implementar FZP de silici, que s’espera que siguin més resistents. L’element està fet d’una oblia de cristall de silici poc absorbent, i no presenta cap interfase entre materials. Així doncs, aquestes lents són especialment adequades per a aguantar les extremes càrregues de radiació de les fonts de raigs X més brillants. Particularment, això és molt important per a les aplicacions a les pròximes generacions de fonts de raigs X, com els Làsers d’Electrons Lliures (FEL, de la denominació anglesa “Free Electron Laser”). El silici també garanteix que no hi hagi cap banda d’absorció en el rang d’energies de la finestra de l’aigua (200-520 eV), fent aquestes lents ideals per a fer imatges de mostres biològiques. En aquest informe, hi ha una descripció detallada de tots els passos involucrats en la fabricació de les Lents Zonals de Fresnel de silici. En resum, les estructures de FZP es modelen sobre una resina utilitzant litografia per feix d’electrons i llavors el patró es transmet al silici mitjançant un gravat d’ions reactius (RIE, de la denominació anglesa ‘Reactive Ion Etching’) utilitzant una fina (20 nm) màscara de Crintermitja. Les membranes de silici es poden aprimar després de la fabricació de les estructures per a garantir una transmissió suficient fins i tot a baixes energies. Aquest informe també inclou l’anàlisi i la discussió d’alguns experiments preliminars per avaluar el rendiment de les Si FZPs fets a la línia de llum PolLux del Swiss Ligth Source amb l’ajuda dels Dr. Jörg Raabe i Dr. George Tzvetkov.
Resumo:
The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.
Resumo:
Mechanically ventilated patients in hospitals are subjected to an increased risk of acquiring nosocomial pneumonia that sometimes has a lethal outcome. One way to minimize the risk could be to make the surfaces on endotracheal tubes antibacterial. In this study, bacterial growth was inhibited or completely prevented by silver ions wet chemically and deposited onto the tube surface. Through the wet chemical treatment developed here, a surface precipitate was formed containing silver chloride and a silver stearate salt. The identity and morphology of the surface precipitate was studied using x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray powder diffraction. Leaching of silver ions into solution was examined, and bacterial growth on the treated surfaces was assayed using Pseudomonas aeruginosa wild type (PAO1) bacteria. Furthermore, the minimum inhibitory concentration of silver ions was determined in liquid- and solid-rich growth medium as 23 and 18 microM, respectively, for P. aeruginosa.
Resumo:
Seasonal variation in container productivity and infestation levels by Aedes aegypti were evaluated in two areas with distinct levels of urbanization degrees in Rio de Janeiro, a slum and a suburban neighborhood. The four most productive containers can generate up to 90% of total pupae. Large and open-mouthed containers, such as water tanks and metal drums, located outdoors were the most productive in both areas, with up to 47.49% of total Ae. aegypti pupae collected in the shaded sites in the suburban area. Water-tanks were identified as key containers in both areas during both the dry and rainy seasons. Container productivity varied according to seasons and urbanization degree. However, the mean number of pupae per house was higher in the suburban area, but not varied between seasons within each area (P > 0.05). High infestation indexes were observed for both localities, with a house index of 20.5-21.14 in the suburban and of 9.56-11.22 in the urban area. This report gives potential support to a more focused and cost-effective Ae. aegypti control in Rio de Janeiro.