980 resultados para Serum Albumin
Resumo:
Knowledge of the role of origin-related, environmental, sex, and age factors on host defence mechanisms is important to understand variation in parasite intensity. Because alternative components of parasite defence may be differently sensitive to various factors, they may not necessarily covary. Many components should therefore be considered to tackle the evolution of host-parasite interactions. In a population of barn owls (Tyto alba), we investigated the role of origin-related, environmental (i.e. year, season, nest of rearing, and body condition), sex, and age factors on 12 traits linked to immune responses [humoral immune responses towards sheep red blood cells (SRBC), human serum albumin (HSA) and toxoid toxin TT, T-cell mediated immune response towards the mitogen phytohemagglutinin (PHA)], susceptibility to ectoparasites (number and fecundity of Carnus haemapterus, number of Ixodes ricinus), and disease symptoms (size of the bursa of Fabricius and spleen, proportion of proteins that are immunoglobulins, haematocrit and blood concentration in leucocytes). Cross-fostering experiments allowed us to detect a heritable component of variation in only four out of nine immune and parasitic parameters (i.e. SRBC- and HSA-responses, haematocrit, and number of C. haemapterus). However, because nestlings were not always cross-fostered just after hatching, the finding that 44% of the immune and parasitic parameters were heritable is probably an overestimation. These experiments also showed that five out of these nine parameters were sensitive to the nest environment (i.e. SRBC- and PHA-responses, number of C. haemapterus, haematocrit and blood concentration in leucocytes). Female nestlings were more infested by the blood-sucking fly C. haemapterus than their male nestmates, and their blood was less concentrated in leucocytes. The effect of year, season, age (i.e. reflecting the degree of maturation of the immune system), brood size, position in the within-brood age hierarchy, and body mass strongly differed between the 12 parameters. Different components of host defence mechanisms are therefore not equally heritable and sensitive to environmental, sex, and age factors, potentially explaining why most of these components did not covary.
Resumo:
To study the toxicity of nanoparticles under relevant conditions, it is important to reproducibly disperse nanoparticles in biological media in in vitro and in vivo studies. Here, single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) were physicochemically and biologically characterized when dispersed in phosphate-buffered saline (PBS) and bovine serum albumin (BSA). BSA-SWNT/DWNT interaction resulted in a reduction of aggregation and an increase in particle stabilization. Based on the protein sequence coverage and protein binding results, DWNTs exhibited higher protein binding than SWNTs. SWNT and DWNT suspensions in the presence of BSA increased interleukin-6 (IL-6) levels and reduced tumor necrosis factor-alpha (TNF-α) levels in A549 cells as compared to corresponding samples in the absence of BSA. We next determined the effects of SWNTs and DWNTs on pulmonary protein modification using bronchoalveolar lavage fluid (BALF) as a surrogate collected form BALB/c mice. The BALF proteins bound to SWNTs (13 proteins) and DWNTs (11 proteins), suggesting that these proteins were associated with blood coagulation pathways. Lastly, we demonstrated the importance of physicochemical and biological alterations of SWNTs and DWNTs when dispersed in biological media, since protein binding may result in the misinterpretation of in vitro results and the activation of protein-regulated biological responses.
Resumo:
Using isolated, in situ, single-pass perfused rat livers, incubations of freshly isolated hepatocytes, and sinusoidal membrane-enriched vesicles, we and others have shown the saturability of transport (efflux) of hepatic glutathione (GSH). These observations have implicated a carrier mechanism. Our present studies were designed to provide further evidence in support of a carrier mechanism for hepatic GSH efflux by demonstrating competition by liver-specific ligands which are taken up by hepatocytes. Perfusing livers with different substances, we found that: (a) sulfobromophthalein-GSH (BSP-GSH) had a dose-dependent and fully reversible inhibitory effect on GSH efflux, while GSH alone did not have any effect; (b) taurocholate had no inhibitory effect; (c) all of the organic anions studied, i.e., BSP, rose bengal, indocyanine green, and unconjugated bilirubin (UCB), manifested potent, dose-dependent inhibitory effects, with absence of toxic effects and complete reversibility of inhibition in the case of UCB. The inhibitory effects of UCB could be overcome partially by raising (CoCl2-induced) hepatic GSH concentration. Because of the physiological importance of UCB, we conducted a detailed study of its inhibitory kinetics in the isolated hepatocyte model in the range of circulating concentrations of UCB. Studies with Cl- -free media, to inhibit the uptake of UCB by hepatocytes, showed that the inhibition of GSH efflux by UCB is apparently from inside the cell. This point was confirmed by showing that the inhibition is overcome only when bilirubin-loaded cells are cleared of bilirubin (incubation with 5% bovine serum albumin). Using Gunn rat hepatocytes and purified bilirubin mono- and diglucuronides, we found that both UCB and glucuronide forms of bilirubin inhibit GSH efflux in a dose-dependent manner. We conclude that the organic anions, although taken up by a mechanism independent of GSH, may competitively inhibit the carrier for GSH efflux from inside the hepatocyte.
Failure to thrive in a girl born into a family affected by familial dysalbuminemic hyperthyroxinemia
Resumo:
Autosomal dominant familial dysalbuminemic hyperthyroxinemia (FDH)is characterized by modified human serum albumin (HSA) inducing asubstantially higher affinity for thyroxine (T4). Histidin or prolinsubstitution on residue R218 produces localized conformationalchanges of HSA creating additional room for T4 binding, leadingto 14-20 fold normal total T4 (TT4) levels. Affected individuals areconsidered euthyroid. Our patient is an 18 months-old swiss girl bornto a mother known for the rare R218P mutation in the HSA gene.She presented with severe failure to thrive (height -2.92 SD, weight-3.6 SD), habitual hip dislocation without anatomical anomaly, latefontanelle closing and protruding ears. Psychomotor development isslightly retarded. Thyroid function testing confirmed extremely high TT4(1446.0 nmol/l) levels, which are similar to her brother's values (1534.4nmol/l and 1757.6 nmol/l respectively). Free T4 seems slightly elevated(26 pmol/l), probably due to methodological reasons. TSH (0.92 mU/l),free T3 (4.4 pmol/l) and thyroxin binding globulin (32 mg/l) are withinthe normal range. Her two half-brothers, affected by the samemutation, are now 18.7 (P1) and 16.6 (P2) years old and wereoriginally described by S. Pannain et al. in 2000. Both werecharacterized by growth retardation (-2.1 and -2.2 SD) before the ageof 4 years. P1 has reached a normal adult height (-0.4 SD) and P2has caught up to normal growth (-0.68 SD) with moderate bonematuration delay. Pubertal development and anterior pituitary functionare adequate. Primary growth and developmental retardation in thefirst years of life with adequate catch-up seem to be a distinctcharacteristic in FDH with R218P mutation. Hip dislocation is typicallyseen in other situations associated to thyroid disorders, like Downsyndrome. These findings might be explained by altered early thyroidhormone utilization in children with FDH.
Resumo:
AIM: Total imatinib concentrations are currently measured for the therapeutic drug monitoring of imatinib, whereas only free drug equilibrates with cells for pharmacological action. Due to technical and cost limitations, routine measurement of free concentrations is generally not performed. In this study, free and total imatinib concentrations were measured to establish a model allowing the confident prediction of imatinib free concentrations based on total concentrations and plasma proteins measurements. METHODS: One hundred and fifty total and free plasma concentrations of imatinib were measured in 49 patients with gastrointestinal stromal tumours. A population pharmacokinetic model was built up to characterize mean total and free concentrations with inter-patient and intrapatient variability, while taking into account α1 -acid glycoprotein (AGP) and human serum albumin (HSA) concentrations, in addition to other demographic and environmental covariates. RESULTS: A one compartment model with first order absorption was used to characterize total and free imatinib concentrations. Only AGP influenced imatinib total clearance. Imatinib free concentrations were best predicted using a non-linear binding model to AGP, with a dissociation constant Kd of 319 ng ml(-1) , assuming a 1:1 molar binding ratio. The addition of HSA in the equation did not improve the prediction of imatinib unbound concentrations. CONCLUSION: Although free concentration monitoring is probably more appropriate than total concentrations, it requires an additional ultrafiltration step and sensitive analytical technology, not always available in clinical laboratories. The model proposed might represent a convenient approach to estimate imatinib free concentrations. However, therapeutic ranges for free imatinib concentrations remain to be established before it enters into routine practice.
Resumo:
In this report, we confirm our previous findings of increased concentrations of soluble amyloid-β protein precursor (sAβPP) in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large cohort of patients (n = 314), not overlapping with those of our previous study, and we extend our observations by including a control group of participants with normal cognition. In addition, we investigate the effects of age, the APOEε4 genotype, and the blood-CSF barrier function on the concentrations of sAβPPα and sAβPPβ. The study participants were categorized according to clinical-neuropsychological criteria, supported by CSF neurochemical dementia diagnostics (NDD) analyses. sAβPPα concentrations in the AD group (132.0 ± 44.8) were significantly higher than in the control group (105.3 ± 37.3, p < 0.0005) but did not differ from the MCI-AD group (138.5 ± 39.5, p = 0.91). The MCI-AD group differed significantly from the MCI-O (97.3 ± 34.3, p < 0.05) group. There was no difference between the control and the MCI-O groups (p = 0.94). Similarly, sAβPPβ concentrations in the AD group (160.2 ± 54.3) were significantly higher than in the control group (129.9 ± 44.6, p < 0.005) but did not differ from the MCI-AD group (184.0 ± 56.4, p = 0.20). The MCI-AD group differed significantly from the MCI-O (127.8 ± 46.2, p < 0.05) group. There was no difference between the control and the MCI-O groups (p > 0.99). We observed highly significant correlation of the two sAβPP forms. Age and the CSF-serum albumin ratio were significant albeit weak predictors of the sAβPPα and sAβPPβ concentrations, while carrying the APOEε4 allele did not influenced the levels of the sAβPP forms. Taken together, the results strongly suggest that CSF sAβPP concentrations may be considered as an extension of already available NDD tools.
Resumo:
Aim:Isolated limb perfusion (ILP) is a technique consisting in administrating doses of chemotherapy up to 20 times higher than via systemic route in a limb affected by melanoma or sarcoma to maximise tumour reduction. ILP is performed in <50 centres worldwide and leads to partial or complete response, however without effect on overall survival. As an alternative to amputation, it improves patient quality of life. We report our >10-year single centre experience on the role of nuclear medicine in ILP. Material and method:From 2000 to 2012, we performed 77 ILP (45 women, 32 men; aged 62±16 years) for 49 melanoma (64%), 25 sarcoma (32%) and 3 others tumors (2 desmoid tumours and 1 aggressive fibromatosis) (3%). The affected limb vascularisation is isolated from the systemic circulation (SYS) using extracorporeal circulation, and chemotherapy (usually TNF and Melphalan) is administered. Peroperatively, limb isolation and eventual leakage from ILP to SYS are monitored by continuous measurement using a gamma-probe placed over the heart (150MBq of 99mTc-human serum albumin in ILP and 4MBq in SYS). The maximum acceptable leakage to the systemic circulation is 10% (maximum tolerated systemic TNF dose). Results:In total, 47 patients (61%) had positive leaks from the ILP to SYS of 4.1±14.5% (median 1% interquartile range 0.4% to 3.2%, range 0 to 100%) and 30 patients (39%) had negative leaks from the SYS to ILP of -0.9±1.2% (median -0.5%, interquartile range -0.8% to -0.2%, range -4.8% to -0.1%). In only 2 patients (2.6%), leaks >10% were observed leading to interrupting ILP. Conclusion:Nuclear Medicine has a crucial role for the safety and quality of ILP in monitoring leakage peroperatively and help deciding whether the procedure should be interrupted to minimize systemic toxicity.
Resumo:
The aim of the study is to evaluate the differences of protein binding of NAMI-A, a new ruthenium drug endowed with selective antimetastatic properties, and of cisplatin and to ascertain the possibility to use two drugs based on heavy metals in combination to treat solid tumour metastases. For this purpose, we have developed a technique that allows the proteins, to which metal drugs bind, to be identified from real protein mixtures. Following incubation with the drugs, the bands containing platinum and/or ruthenium are separated by native PAGE, SDS-PAGE and 2D gel electrophoresis, and identified using laser ablation inductively coupled plasma mass spectrometry. Both drugs interact with essentially the same proteins which, characterised by proteomics, are human serum albumin precursor, macroglobulin alpha 2 and human serotransferrin precursor. The interactions of NAMI-A are largely reversible whereas cisplatin forms stronger interactions that are less reversible. These data correlate well with the MCa mammary carcinoma model on which full doses of NAMI-A combined with cisplatin show additive effects as compared to each treatment taken alone, independently of whether NAMI-A precedes or follows cisplatin. Furthermore, the implication from this study is that the significantly lower toxicity of NAMI-A, compared to cisplatin, could be a consequence of differences in the mode of binding to plasma proteins, involving weaker interactions compared to cisplatin.
Resumo:
In this work the formation of multilayers composed by carboxymethylcellulose (CMC), chitosane and bovine serum albumin (BSA) was studied by ellipsometry. First, the adsorption behavior of carboxymethylcellulose onto amino-terminated surfaces was investigated as a function of molecular weight and average degree of substitution of CMC. The influence of these parameters on the adsorbed amount of CMC onto amino-terminated substrates was absent. However, the interaction of CMC covered surfaces with chitosane and BSA was favored when the average degree of substitution of CMC was increased. The adsorption of BSA onto the polysaccharide systems was studied as a function of pH. At the isoelectric point of BSA a maximum in the adsorbed amount was found.
Resumo:
Poly (ethylene) glycol (PEG) and bovine serum albumin (BSA), as additive agents, were used to enhance the activity of immobilized microbial lipase in organic solvent. Controlled pore silica (CPS) was selected as matrix and different immobilization procedures were evaluated: directly lipase binding on CPS and simultaneous addition of lipase and additive agent on the same support. The highest coupling yield (59.6%) was attained when the immobilization procedure was performed at lipase loading of 150 U/g support in the presence of PEG-1.500. This immobilized system was used in esterification reactions under repeated batch cycles and the biocatalyst half-life was found to increase 2.7 times when compared with the control.
Resumo:
Procion Green HE-4BD is a reactive dye currently used in affinity purification, and commonly present as a contaminant in the final biological preparation. An assay method is described to determine trace amounts of the dye in the presence of human serum albumin(HSA) and leakage from agarose as affinity sorbent by cathodic stripping voltammetry. The proposed method is based on the reductive peak at -0.55V in B-R buffer pH 3 (E=0V and t= 240s), obtained when samples of HSA 2% (m/v) containing dye concentrations in sodium hydroxide pH 12 are submitted to a heating time of 330 min at 80 ºC. Linear calibration curves can be obtained for RG19 dye concentrations from 5x10-9 mol L-1 to 8 x10-8 mol L-1. The detection limit (3sigma) is 1x10-9 mol L-1.
Resumo:
A series of bovine serum albumin-immobilized supports have been prepared and used as restricted access media (RAM) columns. Restricted-access supports combine size-exclusion of proteins and other high-molar-mass matrix components with the simultaneous enrichment of low-molar mass analytes. These characteristics were chromatographically evaluated for the columns. The RAM-BSA (Bovine Serum Albumin) columns showed excellent performance for exclusion of human plasma protein with good retention capacity for a series of acidic, basic, and neutral drugs.
Resumo:
NMR is a valuable screening tool for the binding of ligands to proteins providing structural information on both protein and ligands and is thus largely applied to drug-discovery. Among the recent NMR techniques to probe weak binding protein-ligand complexes we have critically evaluated the advantages and disadvantages of STD (Saturation Transfer Difference), WaterLOGSY (Water Ligand Observation with Gradient Spectroscopy), NOE pumping and DOSY-NOESY (Diffusion-Ordered NOESY) using a mixture of BSA (bovine serum albumin) plus salicylic acid, caffeine, citric acid, adipic acid and D-glucose.
Resumo:
In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.
Resumo:
The binding of [Ru(PAN)(PPh3)2(ISN)]Cl (PAN = 1-(2'-Pyridylazo)-2-naphtholate) to bovine serum albumin (BSA) was investigated by spectroscopic techniques. According to analysis of the results from the Stern-Volmer equation, the ruthenium complex is able to quench the fluorescence intensity of BSA via a dynamic mechanism. The thermodynamic parameters were calculated (ΔH = 30.3 kJ mol-1; ΔS = 195.4 J mol-1 K-1), indicating that hydrophobic force is the main interaction driving force. The site marker competitive experiments revealed that the binding site of ruthenium complex was in the sub-domain IIA of BSA. FTO glass with a film of BSA-[Ru(PAN)(PPh3)2(ISN)]Cl was used as an ascorbic acid sensor. The linear range of the modified electrode was between 1 and 8 × 10-6 mol L-1.