994 resultados para Sequential distribution
Resumo:
Background Ethnic differences in body fat distribution contribute to ethnic differences in cardiovascular morbidities and diabetes. However few data are available on differences in fat distribution in Asian children from various backgrounds. Therefore, the current study aimed to explore ethnic differences in body fat distribution among Asian children from four countries. Methods A total of 758 children aged 8-10 y from China, Lebanon, Malaysia and Thailand were recruited using a non-random purposive sampling approach to enrol children encompassing a wide BMI range. Height, weight, waist circumference (WC), fat mass (FM, derived from total body water [TBW] estimation using the deuterium dilution technique) and skinfold thickness (SFT) at biceps, triceps, subscapular, supraspinale and medial calf were collected. Results After controlling for height and weight, Chinese and Thai children had a significantly higher WC than their Lebanese and Malay counterparts. Chinese and Thais tended to have higher trunk fat deposits than Lebanese and Malays reflected in trunk SFT, trunk/upper extremity ratio or supraspinale/upper extremity ratio after adjustment for age and total body fat. The subscapular/supraspinale skinfold ratio was lower in Chinese and Thais compared with Lebanese and Malays after correcting for trunk SFT. Conclusions Asian pre-pubertal children from different origins vary in body fat distribution. These results indicate the importance of population-specific WC cut-off points or other fat distribution indices to identify the population at risk of obesity-related health problems.
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Resumo:
The presence of large number of single-phase distributed energy resources (DERs) can cause severe power quality problems in distribution networks. The DERs can be installed in random locations. This may cause the generation in a particular phase exceeds the load demand in that phase. Therefore the excess power in that phase will be fed back to the transmission network. To avoid this problem, the paper proposes the use of distribution static compensator (DSTATCOM) that needs to be connected at the first bus following a substation. When operated properly, the DSTATCOM can facilitate a set of balanced current flow from the substation, even when excess power is generated by DERs. The proposals are validated through extensive digital computer simulation studies using PSCAD and MATLAB.
Resumo:
Current unbalance is a significant power quality problem in distribution networks. This problem increases further with the increased penetration of single-phase photovoltaic cells. In this paper, a new approach is developed for current unbalance reduction in medium voltage distribution networks. The method is based on utilization of three single-phase voltage source converters connected in delta configuration between the phases. Each converter is controlled to function as a varying capacitor. The combination of the load and the compensator will result in a balanced load with unity power factor. The efficacy of the proposed current unbalance reduction concept is verified through dynamic simulations in PSCAD/EMTDC.
Resumo:
Load in distribution networks is normally measured at the 11kV supply points; little or no information is known about the type of customers and their contributions to the load. This paper proposes statistical methods to decompose an unknown distribution feeder load to its customer load sector/subsector profiles. The approach used in this paper should assist electricity suppliers in economic load management, strategic planning and future network reinforcements.
Resumo:
The Black Rat (Rattus rattus), a global pest within the macadamia production industry, causes up to 30% crop damage in Australian orchards. During early stages of production in Australia, research demonstrated the importance of non crop adjacent habitats as significant in affecting the patterns of crop damage seen throughout orchards. Where once rodent damage was limited to the outside edges of orchard blocks, growers are now reporting finding crop damage throughout entire orchards. This study therefore aims to explore the spatial patterns of rodent distribution and damage now occurring in Australian macadamia orchards. We show that rodent damage and rodent distribution in these newer production regions differ from that shown in previous Australian research. Previous Australian research has shown damage patterns which were associated with the edges of orchard blocks however this study demonstrates a more widespread damage distribution. In the current study there is no relationship between rodent damage and the orchard edge. Arboreal rodent nests were identified within these newer orchard systems, suggesting rodents are residing within the tree component of the orchard system and not dependent on adjacent non-crop habitat for shelter. Results from this study confirm that rodents have modified their nesting and foraging behaviour in newer orchards systems in Australia. We suggest that this is a response of increased and prolonged availability of macadamia nuts in newer production regions enabling populations to be maintained throughout the year. Management strategies will require modification if control is to be achieved.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
The inquiries to return predictability are traditionally limited to conditional mean, while literature on portfolio selection is replete with moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regressions and copulas, using quantile regressions to extract information in marginal distributions and copulas to capture dependence structure. A preference function which captures higher moments is proposed for portfolio selection. An empirical application highlights the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.
Expression and distribution of cell-surface proteoglycans in the normal Lewis rat molar periodontium
Resumo:
Cell-surface proteoglycans participate in several biological functions such as cell cell and cell-matrix interactions, cell adhesion, the binding to various growth factors as co-receptors and repair. To understand better the expression and distribution of cell-surface proteoglycans in the periodontal tissues, an immunohistochemical evaluation of the normal Lewis rat molar periodontium using panels of antibodies for syndecan-1, -2, -4, glypican and betaglycan was carried out. Our results demonstrated the expression and distribution of all proteoglycans in the suprabasal gingival epithelium, soft and hard connective tissues. Both cellular and matrix localization was evident within the various periodontal compartments. The presence of these cell-surface proteoglycans indicates the potential for roles in the process of tissue homeostasis, repair or regeneration in periodontium of which each function requires further study.