955 resultados para Semiconductors nanocomposite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambipolar transport has been realized in organic heterojunction transistors with metal phthalocyanines, phenanthrene-based conjugated oligomers as the first semiconductors and copper-hexadecafluoro-phthalocyanine as the second semiconductor. The electron and hole mobilities of ambipolar devices with rod-like molecules were comparable to the corresponding single component devices, while the carrier mobility of ambipolar devices with disk-like molecules was much lower than the corresponding single component devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaPO4:Ce3+, Tb3+ nanoparticles were prepared by the reverse microemulsion with functional monomer, methyl methacrylate (MMA) as oil phase, and LaPO4:Ce3+, Tb3+/poly(methyl methacrylate) (PMMA) nanocomposite was obtained via polymerization of MMA monomer. The nanoparticles and nanocomposite have been well characterized by XRD, SEM, TEM, UV/vis spectrum, photoluminescence excitation and emission spectra and luminescence decays. The obtained solid nanocomposite LaPO4:Ce3+, Tb3+/PMMA is highly transparent and exhibits strong green photoluminescence upon UV excitation, due to the integration of luminescent LaPO4:Ce3+, Tb3+ nanoparticles. The luminescent lifetime of Tb3+ is determined to be 1.25 ms in the nanocomposite. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 mu A mM(-1) cm(-2) was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 mu M and a response time of 3 s, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an ultrasensitive platform for the detection of cadmium (Cd2+) combining the nafion-graphene nanocomposite film with differential pulse anodic stripping voltammetry (DPASV) analysis was presented. It is found that this sensing platform exhibits enhanced response to the determination of the Cd2+ and has been used to determine the Cd2+ in real sample with good recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite of hydroxyapatite (HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) shows a wide application for bone fixation materials due to its improved interface compatibility, mechanical property and biocompatibility in our previous study. In this paper, a 3-D porous scaffold of g-HAP/poly (lactide-co-glycolide) (PLGA) was fabricated using the solvent casting/particulate leaching method to investigate its applications in bone replacement and tissue engineering. The composite of un-grafted HAP/PLGA and neat PLGA were used as controls. Their in vivo mineralization and osteogenesis were investigated by intramuscular implantation and replacement for repairing radius defects of rabbits. After surface modification, more uniform distribution of g-HAP particles but a lower calcium exposure on the surface of g-HAP/PLGA was observed. Intramuscular implantation study showed that the scaffold of g-HAP/PLGA was more stable than that of PLGA, and exhibited similar mineralization and biodegradability to HAP/PLGA at the 12-20 weeks post-surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work, a polymer electrolyte based on polymer/clay nanocomposite has been developed. Montmorillonite (MMT) clay was used as the filler. due to its special size in length and thickness, and its sandwich type structure. The obtained gel polymer electrolytes have high ionic conductivity up to 2.5 mS cm(-1) with high cationic transference number (about 0.64) at room temperature. The influences of the filler on the membrane morphology. the solvent uptake, the ionic conductivity, and the cation transport number were investigated, and thus the significant contribution from the exfoliated organophilic MMT was identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 degrees C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(-6) S/cm. (c) 2007 Li Qi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of oligothiophenes (OThs), NaTn and TNTn (n = 2-6 represents the number of thiophene rings), end-capped with naphthyl and thionaphthyl units have been synthesized by means of Stille coupling. Their thermal properties, optical properties, single crystal structures, and organic field-effect transistor performance have been characterized. All oligomers display great thermal stability and crystallinity. ne crystallographic structures of NaT2, NaT3, TNT2, and TNT3 have been determined. The crystals of NaT2 and NaT3 are monoclinic with space group P2(1)/C, while those of TNT2 and TNT3 are triclinic and orthorhombic with space groups P-1(-) and P2(1)2(1)2(1), respectively. All oligomers adopt the well-known herringbone packing-mode in crystals with packing parameters dependent on the structure of the end-capping units and the number of thiophene rings. The shorter intermolecular distance in NaT3 compared to NaT2 indicates that the intermolecular interaction principally increases with increasing molecular length. X-ray diffraction and atomic force microscopy (AFM) characterization indicate that the NaTn oligomers can form films with better morphology and high molecular order than TNTn oligomers with the same number of thiophene rings. The NaTn oligomers exhibit mobilities that are much higher than those for TNTn oligomers (0.028-0.39 cm(2) V-1 s(-1) versus 0.010-0.055 cm(2) V-1 s(-1), respectively).