998 resultados para Schubert, Franz, 1797-1828. Fantasien, violí, piano, D. 934, do major
Resumo:
Digitoitu 17. 12. 2008
Resumo:
Soitinnus: orkesteri.
Resumo:
Soitinnus: orkesteri.
Resumo:
Soitinnus: orkesteri.
Resumo:
Soitinnus: orkesteri.
Resumo:
Soitinnus: kamariorkesteri.
Resumo:
Soitinnus: mieskuoro, alttoviulut (2), sellot (2), kontrabasso.
Resumo:
Soitinnus: orkesteri.
Resumo:
La version intégrale de cette thèse est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal (www.bib.umontreal.ca/MU).
Resumo:
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine-adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554-1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis-syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phospholipases D (PLDs), the major dermonecrotic factors from brown spider venoms, trigger a range of biological reactions both in vitro and in vivo. Despite their clinical relevance in loxoscelism, structural data is restricted to the apo-form of these enzymes, which has been instrumental in understanding the functional differences between the class I and II spider PLDs. The crystal structures of the native class II PLD from Loxosceles intermedia complexed with myo-inositol 1-phosphate and the inactive mutant H12A complexed with fatty acids indicate the existence of a strong ligand-dependent conformation change of the highly conserved aromatic residues, Tyr 223 and Trp225 indicating their roles in substrate binding. These results provided insights into the structural determinants for substrate recognition and binding by class II PLDs.