938 resultados para STEROID SULFATASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clinical efficacy of anti-immunoglobulin E (IgE) therapy indicates a central role for IgE in perpetuation of allergic inflammatory diseases. Omalizumab is now uti- lized in treatment of a wide variety of allergic conditions including severe asthma, allergic rhinitis, atopic dermati- tis, food allergy and urticaria either alone or adjunct with other therapies such as steroid administration or allergen- specific immunotherapy [1, 2]. Current research activity is focused on the cellular and molecular mechanisms by which IgE influences the immunopathogenesis of allergic disease [3]. Increased knowledge of how IgE exerts its effects will underpin effective clinical use of anti-IgE treatment. In this issue Kerzel et al. [4] investigate the effects of altered antibo dy repertoire on the outcomes of an experimental model of allergic asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malnutrition is common in end-stage liver disease, but a correction after transplantation is expected. Body cell mass (BCM) assessment using total body potassium (TBK) measurements is considered the gold standard for assessing nutritional status. The aim of this study was to examine the BCM and, therefore, nutritional status of long-term survivors after childhood liver transplantation. © 2014 American Association for the Study of Liver Diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N 71,225 European ancestry, N 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10 24), CYP1A2 (P = 1 × 10 23), FGF5 (P = 1 × 10 21), SH2B3 (P = 3 × 10 18), MTHFR (P = 2 × 10 13), c10orf107 (P = 1 × 10 9), ZNF652 (P = 5 × 10 9) and PLCD3 (P = 1 × 10 8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inflammatory skin disease pyoderma gangrenosum is characterized by destructive ulceration, typically occurring on the calves and thighs and less commonly on the buttocks and face. Lesions vary in size and may be multiple, often rapidly ulcerating to form deep painful wounds. Ulcers characteristically have ragged purple edges that overhang. In many patients a concomitant condition can be identified such as inflammatory bowel disease, rheumatoid arthritis, chronic autoimmune hepatitis, and various hematologic and solid tumours (1,2). Treatment of these ulcers in the past has been disappointing. The large lesions usually run a chronic course and heal very slowly, with traditional dressings often in combination with systemic steroids or immunosuppressants. Since 1998, a small number of case have been reported of adults with pyoderma gangrenosum whose lesions heal with the use of topical tacrolimus (FK506) (2–4). We report, to the best of our knowledge, the first successful treatment of a child with pyoderma gangrenosum using topical tacrolimus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day '0' of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5, 25 and 100 mu M) for 3 h at 37 degrees C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls, In addition the in vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15-90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6-15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6-9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCG added in vitro, The in vitro response of luteal cells to added hCG was inhibited by 0, 50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6-9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP, The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12-15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain of in vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solubilization of bilirubin IX-Alpha in aqueous solution by sodium cholate micelles has been examined by 270 MHz 1H-NMR spectroscopy. Incorporation of bilirubin into the micelles is accompanied by specific shifts of bilirubin vinyl and bridgehead protons and the C18 and C19 methyl groups of the steroid. The observed chemical shifts show a monotonic concentration dependence suggesting that changes in aggregation size are continuous. Nuclear Overhauser effects (NOE) have been shown to be a useful probe or micellization. A 4:1 cholate/bilirubin mixture has been investigated by difference NOE spectroscopy. The observation of intermolecular nuclear Overhauser effects between peripheral protons of bilirubin and cholate are diagnostic of spatially proximate groups. Inter-cholate nuclear Overhauser effects increase in magnitude upon bilirubin incorporation suggesting closer packing of steroid molecules on solubilization of the pigment. Intramolecular nuclear Overhauser effects observed for solubilized bilirubin are consistent with a compact intramolecularly hydrogen-bonded conformation resembling that determined for bilirubin in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of estrogen (E) modulation of retinol-binding protein (RBP) production in the liver of immature chicks were compared with those governing de novo induction of riboflavin carrier protein (RCP) in the same tissue. A single dose of E markedly enhanced the plasma levels of RBP without any detectable lag period to reach peak value by 24 h and this was followed by a decline to attain the baseline by 4 days. There was no amplification of the response during secondary stimulation unlike the case with RCP induction. With multiple E administration, the 4-fold increased plasma RBP concentrations were sustained at a steady state during both primary and secondary stimulations, whereas concomitant RCP concentration progressively increased with each hormone administration and this response was further amplified during secondary stimulation. Unlike RCP induction, enhanced RBP accumulation was not strictly E dose dependent although a minimal threshold level of the steroid was required to elicit measurable response. Progesterone (P) could neither modulate nor substitute for E in enhancing plasma levels of either of the 2 proteins while the anti-estrogens, en- and zuclomifene citrate severely suppressed the production of both the proteins. RCP induction was completely inhibited by both α-amanitin and cycloheximide for prolonged periods while E-stimulated RBP production was affected only partially by α-amanitin. Likewise, cycloheximide inhibition of RBP accumulation followed a pattern similar to that of hepatic general protein synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In partially hepatectomized rats, the activity of phenylalanine hydroxylase decreased in the regenerating liver but not in the kidney. The concentration of corticosterone in the plasma of hepatectomized rats increased, and phenylalanine hydroxylase, despite being cortisol inducible, decreased in these as well as simultaneously adrenalectomized rats, showing lack of correlation between the changes of the steroid and the enzyme during the regeneration process. The decrease in the enzyme activity could be prevented by administering, during hepatic regeneration, only noradrenaline and adrenergic blocking agents, among the many hormones and phenyl compounds tested. A decrease in hepatic phenylalanine hydroxylase was also observed during two other conditions of hepatocyte cell proliferation obtained after giving chlorophenoxyisobutyrate and α-hexachlorocyclohexane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens control a variety of developmental processes that create the male phenotype and are important for maintaining male fertility and normal functions of tissues and organs that are not directly involved in procreation. Androgen receptor (AR) that mediates the biological actions of androgens is a member of the nuclear receptor superfamily of ligand-inducible transcription factors. Although AR was cloned over 15 years ago, the mechanisms by which it regulates gene expression are not well understood. A growing body of in vitro experimental evidence suggests that a complex network of proteins is involved in the androgen-dependent transcriptional regulation. However, the process of AR-dependent transcriptional regulation under physiological conditions is largely elusive. In the present study, a series of experiments were performed, including quantitative chromatin immunoprecipitation (ChIP) assays, to investigate AR-mediated transcription process using living prostate cancer cells. Our results show that the loading of AR and recruitment of coactivators and RNA polymerase II (Pol II) to both the promoter and enhancer of AR target genes are a transient and cyclic event that in addition to hyperacetylation, also involves dynamic changes in methylation, phosphorylation of core histone H3 in androgen-treated LNCaP cells. The dynamics of testosterone (T)-induced loading of AR onto the proximal promoters of the genes clearly differed from that loaded onto the distal enhancers. Significantly, more holo-AR was loaded onto the enhancers than the promoters, but the principal Pol II transcription complex was assembled on the promoters. By contrast, the pure antiandrogen bicalutamide (CDX) complexed to AR elicited occupancy of the PSA promoter, but was unable to load onto the PSA enhancer and was incapable of recruiting Pol II, coactivators and following changes of covalent histone modifications. The partial antagonist cyproterone acetate (CPA) and mifepristone (RU486) were capable of promoting AR loading onto both the PSA promoter and enhancer at a comparable efficiency with androgen in LNCaP cells expressing mutant AR. However, CPA- and RU486-bound AR not only recruited Pol II and coactivator p300 and GRIP1 onto the promoter and enhancer, but also recruited the corepressor NCoR onto the promoter as efficiently as CDX. In addition, we demonstrate that both proteasome and protein kinases are implicated in AR-mediated transcription. Even though proteasome inhibitor MG132 and protein kinase inhibitor DRB (5, 6-Dichlorobenzimidazole riboside) can block ligand-dependent accumulation of PSA mRNA with same efficiency, their use results in different molecular profiles in terms of the formation of AR-mediated transcriptional complex. Collectively, these results indicate that transcriptional activation by AR is a complicated process, which includes transient loading of holo-AR and recruitment of Pol II and coregulators accompanied by a cascade of distinct covalent histone modifications; This process involves both the promoter and enhancer elements, as well as other general components of the cell machineries e.g. proteasome and protein kinase; The pure antiandrogen CDX and the partial antagonist CPA and RU486 exhibit clearly different profiles in terms of their ability to induce the formation of AR-dependent transcriptional complexes and the histone modifications associated with the target genes in human prostate cancer cells. Finally, by using quantitative RT-PCR to compare the expression of sixteen AR co-regulators in prostate cancer cell lines, xenografts, and clinical prostate cancer specimens we suggest that AR co-regulators protein inhibitor of activated STAT1 (PIAS1) and steroid receptor coactivator 1(SRC1) could be involved in the progression of prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgen receptor (AR) is necessary for normal male phenotype development and essential for spermatogenesis. AR is a classical steroid receptor mediating actions of male sex steroids testosterone and 5-alpha-dihydrotestosterone. Numerous coregulators interact with the receptor and regulate AR activity on target genes. This study deals with the characterization of androgen receptor-interacting protein 4 (ARIP4). ARIP4 binds DNA, interacts with AR in vitro and in cultured yeast and mammalian cells, and modulates AR-dependent transactivation. ARIP4 is an active DNA-dependent ATPase, and this enzymatic activity is essential for the ability of ARIP4 to modulate AR function. On the basis of sequence homology in its ATPase domain, ARIP4 belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA repair, and homologous recombination. Similar to its closest homologs ATRX and Rad54, ARIP4 does not seem to be a classical chromatin remodeling protein in that it does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. However, ARIP4 is able to generate superhelical torsion on linear DNA fragments. ARIP4 is covalently modified by SUMO-1, and mutation of six potential SUMO attachment sites abolishes the ability of ARIP4 to bind DNA, hydrolyze ATP, and activate AR function. ARIP4 expression starts in early embryonic development. In mouse embryo ARIP4 is present mainly in the neural tube and limb buds. In adult mouse tissues ARIP4 expression is virtually ubiquitous. In mouse testis ARIP4 is expressed in the nuclei of Sertoli cells in a stage-dependent manner. ARIP4 is also present in the nuclei of Leydig cells, spermatogonia, pachytene and diplotene spermatocytes. Testicular expression pattern of ARIP4 does not differ significantly in wild-type, FSHRKO, and LuRKO mice. In the testis of hpg mice, ARIP4 is found mainly in interstitial cells and has very low, if any, expression in Sertoli and germ cells. Heterozygous Arip4+/ mice are fertile and appear normal; however, they are haploinsufficient with regard to androgen action in Sertoli cells. In contrast, Arip4 / embryos are not viable. They have significantly reduced body size at E9.5 and die by E11.5. Compared to wild-type littermates, Arip4 / embryos possess a higher percentage of apoptotic cells at E9.5 and E10.5. Fibroblasts derived from Arip4 / embryos cease growing after 2-3 passages and exhibit a significantly increased apoptosis and decreased proliferation rate than cells from wild-type embryos. Our findings demonstrate that ARIP4 plays an essential role in mouse embryonic development. In addition, testicular expression and AR coregulatory activity of ARIP4 suggest a role of ARIP4-AR interaction in the somatic cells of the testis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Employing a specific radioimmunoassay for quantification, the kinetics of estrogen-induced elevation in the plasma concentration of biotin-binding protein (BBP) in immature male chicks was investigated. A single injection of the steroid hormone enhanced the plasma BBP content several-fold at 6 h, reaching peak levels around 48 h and declining thereafter. A 2-fold amplification of the response was evident during secondary stimulation with the hormone. The magnitude of the response was hormonal dose-dependent while the initial lag phase and the time of peak protein accumulation were unaltered within the hormonal doses tested. The circulatory half-life of the specific protein in normal and estrogenized birds was 10 h. Hyperthyroidism markedly decreased the hormonal response while the opposite effect was seen during hypothyroidism. The antiestrogens E- and Z-clomiphene citrate effectively blocked the protein induction whereas progesterone, either alone or in combination with estrogen, was ineffective in modulating the induction. Cycloheximide administration drastically inhibited the inductive response. The above observations clearly suggest that the genes corresponding to the two isofunctional proteins of chicken egg, viz. BBP and avidin, are differentially regulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circulatory concentrations of riboflavin carrier protein (RCP) were quantitated in bonnet macaques by employing a heterologous radioimmunoassay involving 125I-labelled chicken RCP and its antiserum. The levels of monkey RCP in the serum seem to be governed by the estrogenic status of the animals. An increase in concentration of serum estradiol in the adult females during the menstrual cycle and early pregnancy could be correlated with enhanced serum RCP levels. Estadiol-17β administered to both immature female and male monkeys, specifically brought about elevated levels of RCP with a slower time course of response in males than in females. These results could be a reflection of a more rapid decline of both circulatory estrogen and RCP concentrations in male serum. Repeated administration of estradiol-17β to male animals led to prolonged elevated levels of RCP following estrogen administration. Thus, it would appear that the evolutionary conservation of RCPs from the aves to the primates encompasses not only their physicochemical similarities but also extends to the estrogenic modulation of their elaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.