998 resultados para SPIN-ORBIT INTERACTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic-inorganic hybrid materials based on the assembly between inorganic 2D host structure and polymer have received considerable attention in the last few years. This emerging class of materials presents several applications according to their structural and functional properties. Particularly, among others, layered double hydroxides (LDHs) provide the opportunity of preparing new organically modified 2D nanocomposites. Pyrrole carboxylic acid derivatives, namely 4-(lH-pyrrol-1-yl)benzoate, 3-(pyrrol-i-yl)-propanoate,7-(pyrrol-1-yl)-heptanoate, and aniline carboxylic acid derivative, namely 3-aminobenzoic acid, have been intercalated in LDHs of intralamellar composition Zn2Al(OH)(6). The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by powder X-ray diffraction patterns (PXRD), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and electron spin resonance (ESR). The basal spacing found by the PXRD technique gives evidence of the formation of bilayers of the intercalated anions. ESR spectra present a typical signal with a superhyperfine structure with 6 + 1 lines (g = 2.005 +/- 0.0004), which is assigned to the interaction between a carboxylate radical from the guest molecules and a nearby aluminium nucleus (I = 5/2) from the host structure. Additionally, the ESR data suggest that the monomers are connected to each other in limited number after thermal treatment. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques. Assuming an inclined dipole model for the Earth's magnetic field, an analytical averaging method is applied to obtain the mean residual torque every orbital period. The orbit mean anomaly is utilized to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, and non-circular orbits, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-energy scattering of ortho positronium (Ps) by ortho Ps has been studied in a full quantum mechanical coupled-channel approach. In the singlet channel (total spin s(T) = 0) we find S- and P-wave resonances at 3.35 eV (width 0.02 eV) and 5.05 eV (width 0.04 eV), respectively, and a binding of 0.43 eV of Ps(2). The scattering length for s(T) = 0 is 3.95 Angstrom and for s(T) = 2 is 0.83 Angstrom. The small s(T) = 2 scattering length makes the spin-polarized ortho Ps atoms an almost noninteracting ideal gas which may undergo Bose-Einstein condensation. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we study the behaviour of the spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KO field, a result that breaks the usual equivalence between the DKP and the KG fields.Next we analyse the case of the Teleparallel Equivalent of General Relativity (Weitzenbock manifold), showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni) = 0.2-0.5 in the nickel-based solid solution ErNixMn1-xO3, while it can be extended up to x(Co) = 0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1-xO3, a critical concentration x(crit)(Ni) = 1/3 separates two regimes: spin-canted AF interactions predominate at x < x(crit), while the ferromagnetic behavior is enhanced for x > x(crit). Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at T-c, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T-1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50 = Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron spin resonance (ESR) spectra of Eu2+ (4f(7), S = 7/2) in LaB6 single crystal show a single Dysonian resonance for the localized Eu2+ magnetic moments. It is shown that the Eu2+ ions are covalent exchange coupled to the (B) 2p-like host conduction electrons. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spin label TEMPO does not show a binding to myoglobin molecule in solution. This is probably due to the fact that this protein does not have a hydrophobic pocket large enough to accommodate the TEMPO molecule. In the crystal the spin label is bound and two kinds of spectra are observed: one isotropic and the other anisotropic. The anisotropic site is probably an intermolecular one. The correlation time for the label in the crystal is very sensitive to temperature showing a transition near 30 °C. This change can be explained as a result of the conformational change observed for myoglobin near this temperature: the motion of the spin label becomes more restricted below this temperature. Change in hydration is the probable cause of this structural change. The changes in the EPR spectra of the anisotropic label suggest that it is bound near the first layers of protein in the crystal. © 1985 Societá Italiana di Fisica.