205 resultados para SLAM-6D
Resumo:
To determine the prevalence of refractive errors in the public and private school system in the city of Natal, Northeastern Brazil. Methods: Refractometry was performed on both eyes of 1,024 randomly selected students, enrolled in the 2001 school year and the data were evaluated by the SPSS Data Editor 10.0. Ametropia was divided into: 1- from 0.1 to 0.99 diopter (D); 2- 1.0 to 2.99D; 3- 3.00 to 5.99D and 4- 6D or greater. Astigmatism was regrouped in: I- with-the-rule (axis from 0 to 30 and 150 to 180 degrees), II- against-the-rule (axis between 60 and 120 degrees) and III- oblique (axis between > 30 and < 60 and >120 and <150 degrees). The age groups were categorized as follows, in: 1- 5 to 10 years, 2- 11 to 15 years, 3- 16 to 20 years, 4- over 21 years. Results: Among refractive errors, hyperopia was the most common with 71%, followed by astigmatism (34%) and myopia (13.3%). Of the students with myopia and hyperopia, 48.5% and 34.1% had astigmatism, respectively. With respect to diopters, 58.1% of myopic students were in group 1, and 39% distributed between groups 2 and 3. Hyperopia were mostly found in group 1 (61.7%) as well as astigmatism (70.6%). The association of the astigmatism axes of both eyes showed 92.5% with axis with-the-rule in both eyes, while the percentage for those with axis againstthe- rule was 82.1% and even lower for the oblique axis (50%). Conclusion: The results found differed from those of most international studies, mainly from the Orient, which pointed to myopia as the most common refractive error, and corroborates the national ones, with the majority being hyperopia
Resumo:
Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.
Resumo:
O presente documento reflete o trabalho desenvolvido no âmbito da Prática de Ensino Supervisionada (PES), realizada no Agrupamento de Escolas D. Filipa de Lencastre, em Lisboa, durante o ano letivo de 2014-2015 sob a orientação da Professora Micaela Patrício. Os relatos, e respetivas reflexões críticas são referentes à observação das aulas lecionadas pela professora Micaela Patrício ao longo do ano letivo, e à prática em onze aulas (90 minutos cada) lecionadas - 5 aulas na turma 5ºF e 6 aulas na turma 6ºD. A organização do documento consiste em quatro Capítulos: no Capítulo 1 é feito o enquadramento do ensino da música em Portugal no contexto vocacional e genérico; no Capítulo 2 é caracterizada a escola onde decorreu a PES; no Capítulo 3 são referidas as aulas observadas, lecionadas, atividades desenvolvidas fora da sala de aula e as reuniões assistidas ao longo do ano letivo; no Capítulo 4 é descrito o projeto de Investigação-ação: “Vozes Tocadas…Bandas Cantadas”. Esta temática justifica-se pela necessidade de proporcionar aos alunos aprendizagens ativas, significativas, diversificadas, integradas e socializadoras no âmbito da música. Por fim e em jeito de conclusão, apresenta-se uma reflexão englobante da aprendizagem direta e indireta no decurso da PES.
Resumo:
A introdução na rotina da prática clínica de medidas de avaliação de resultados centradas no paciente permite a identificação de problemas físicos e psicológicos, a monitorização da evolução e impacto provocado no estado de saúde e possibilita a adequação dos cuidados e verificação da sua efetividade. Objetivos: Avaliar estado de saúde e mudanças ocorridas após processo de cuidados de fisioterapia. Material e métodos: Efetuou‐se um estudo de desenho longitudinal e preditivo em 511 indivíduos utilizadores do Serviço de Fisioterapia do Hospital da Misericórdia da Mealhada, avaliados no início e no fim do tratamento. Do protocolo constava a medida de estado de saúde MOS SF‐36 e o índice de saúde SF-6D. Resultados: Observaram-se melhorias significativas do estado de saúde dos indivíduos entre o início e o fim do tratamento. Houve grande variabilidade de tratamentos realizados com predominância dos agentes físicos, terapia manual e terapia pelo movimento. Não se encontraram fatores preditivos para as mudanças de estado de saúde ocorridas. Conclusões: A criação de um sistema de recolha de dados reportados pelo paciente é necessário para a melhoria dos cuidados, bem como a sustentação dos mesmos na prática baseada na evidência.
Resumo:
We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753 , to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry- breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems. © 2013 SISSA.
Resumo:
This paper takes stock of the most recent wave of PTAs with a view to informing some of the policy choices developing countries face in negotiating preferential agreements in services. The paper documents a number of lessons in rule-making and market opening arising from the practice of preferential liberalization in services trade as seen from a sample of fifty five agreements (out of the 76 PTAs featuring services provisions that have been notified to the WTO to date). The paper asks whether and how PTAs differ from the GATS and whether such differences matter in policy terms.
Resumo:
Mestrado em Matemática Aplicada à Economia e à Gestão
Resumo:
Este artículo describe la adquisición de barridos tridimensionales (3D) nivelados en el robot móvil Andábata sin necesidad de detener su movimiento. Para ello, la computadora de Andábata debe integrar cada uno de los rangos láser, adquiridos con unos determinados ángulos de cabeceo y guiñada, con la información odométrica y las medidas de inclinación del vehículo para producir coordenadas Cartesianas niveladas referenciadas al inicio de cada barrido. Todo ello se ha realizado bajo el sistema operativo de robots ROS con la ayuda de paquetes estándard. El correcto funcionamiento de este esquema local de Localización y Modelado Simultáneos (SLAM) se ha comprobado experimentalmente sobre terreno inclinado.
Resumo:
A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.
Resumo:
Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot.