962 resultados para Rotation de Faraday
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
Resumo:
The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.
A preliminary Study of the Effects of medio-Lateral Rotation on Stresses in the Artificial Hip Joint
Resumo:
We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ˜600 Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe. In the case of the Hyades, our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour-period relation, with identification of numerous rapid rotators from ˜0.5 Msun down to the lowest masses probed by our survey (˜0.25 Msun). This provides crucial constraints on the rotational braking time-scales and further clears the way to use gyrochronology as an accurate age measurement tool for main-sequence stars.
Resumo:
omega Ori (HD37490, HR1934) is a Be star known to have presented variations. In order to investigate the nature and origin of its short-term and mid-term variability, a study is performed of several spectral lines (Halpha, Hdelta, HeI 4471, 4713, 4921, 5876, 6678, CII 4267, 6578, 6583, Mg II 4481, Si III 4553 and Si II 6347), based on 249 high signal-to-noise high-resolution spectra taken with 8 telescopes over 22 consecutive nights during the MuSiCoS (Multi SIte COntinuous Spectroscopy) campaign in November-December 1998. The stellar parameters are revisited and the projected rotational velocity (v sin i = 179 km s(-1)) is redetermined using several methods. With the MuSiCoS 98 dataset, a time series analysis of line-profile variations (LPVs) is performed using the Restricted Local Cleanest (RLC) algorithm and a least squares method. The behaviour of the velocity of the centroid of the lines, the equivalent widths and the apparent vsini for several lines, as well as Violet and Red components of photospheric lines affected by emission (red He i lines, Si II 6347, CII 6578, 6583) are analyzed. The non-radial pulsation (NRP) model is examined using phase diagrams and the Fourier-Doppler Imaging (FDI) method. The LPVs are consistent with a NRP mode with l = 2 or 3, \m\ = 2 with frequency 1.03 cd(-1). It is shown that an emission line outburst occurred in the middle of the campaign. Two scenarios are proposed to explain the behaviour of a dense cloud, temporarily orbiting around the star with a frequency 0.46 c d(-1), in relation to the outburst.
Resumo:
We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.
Resumo:
Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.
Resumo:
The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.
Resumo:
Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rota-tion of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.
Resumo:
Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rotation of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.
Resumo:
Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.