974 resultados para Residual Water Treatment Station
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Integration of renewable energy with desalination technologies has emerged as an attractive solution to augment fresh water supply sustainably. Fouling and scaling are still considered as limiting factors in membrane desalination processes. For brackish water treatment, pre-treatment of reverse osmosis (RO) feed water is a key step in designing RO plants avoiding membrane fouling. This study aims to compare at pilot scale the rejection efficiency of RO membranes with multiple pre-treatment options at different water recoveries (30, 35, 40, 45 and 50%) and TDS concentrations (3500, 4000, and 4500mg/L). Synthetic brackish water was prepared and performance evaluation were carried out using brackish water reverse osmosis (BWRO) membranes (Filmtec LC-LE-4040 and Hydranautics CPA5-LD-4040) preceded by 5 and 1μm cartridge filters, 0.02μm ultra-filtration (UF) membrane, and forward osmosis (FO) membrane using 0.25M NaCl and MgCl2 as draw solutions (DS). It was revealed that FO membrane with 0.25M MgCl2 used as a draw solution (DS) and Ultra-filtration (UF) membrane followed by Filmtec membrane gave overall 98% rejection but UF facing high fouling potential due to high applied pressure. Use of 5 and 1μm cartridge filter prior to Filmtec membrane also showed effective results with 95% salt rejection.
Resumo:
Composites are fast becoming a cost effective option when considering the design of engineering structures in a broad range of applications. If the strength to weight benefits of these material systems can be exploited and challenges in developing lower cost manufacturing methods overcome, then the advanced composite systems will play a bigger role in the diverse range of sectors outside the aerospace industry where they have been used for decades.
This paper presents physical testing results that showcase the advantages of GRP (Glass Reinforced Plastics), such as the ability to endure loading with minimal deformation. The testing involved is a cross comparison of GRP grating vs. GRP encapsulated foam core. Resulting data gained within this paper will then be coupled with design optimization (utilising model simulation) to bring forward layup alterations to meet the specified load classifications involved.
Resumo:
Fiji exports approximately 800 t year-1 of 'Solo Sunrise' papaya marketed as 'Fiji Red' to international markets which include New Zealand, Australia and Japan. The wet weather conditions from November to April each year result in a significant increase in fungal diseases present in Fiji papaya orchards. The two major pathogens that are causing significant post-harvest losses are: stem end rot (Phytophthora palmivora) and anthracnose (Colletotrichum spp.). The high incidence of post-harvest rots has led to increased rejection rates all along the supply chain, causing a reduction in income to farmers, exporters, importers and retailers of Fiji papaya. It has also undermined the superior quality reputation on the market. In response to this issue, the Fiji Papaya industry led by Nature's Way Cooperative, embarked on series of trials supported by the Australian Centre for International Agricultural Research (ACIAR) to determine the most effective and economical post-harvest control in Fiji papaya. Of all the treatments that were examined, a hot water dip treatment was selected by the industry as the most appropriate technology given the level of control that it provide, the cost effectiveness of the treatment and the fact that it was non-chemical. A commercial hot water unit that fits with the existing quarantine treatment and packing facilities has been designed and a cost benefit analysis for the investment carried out. This paper explores the research findings as well as the industry process that has led to the commercial uptake of this important technology.
Resumo:
Water treatment using photocatalysis has gained extensive attention in recent years. Photocatalysis is promising technology from green chemistry point of view. The most widely studied and used photocatalyst for decomposition of pollutants in water under ultraviolet irradiation is TiO2 because it is not toxic, relatively cheap and highly active in various reactions. Within this thesis unmodified and modified TiO2 materials (powders and thin films) were prepared. Physico-chemical properties of photocatalytic materials were characterized with UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman spectroscopy, goniometry, diffuse reflectance measurements, thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. Photocatalytic activity of prepared samples in aqueous environment was tested using model compounds such as phenol, formic acid and metazachlor. Also purification of real pulp and paper wastewater effluent was studied. Concentration of chosen pollutants was measured with high pressure liquid chromatography (HPLC). Mineralization and oxidation of organic contaminants were monitored with total organic carbon (TOC) and chemical oxygen demand (COD) analysis. Titanium dioxide powders prepared via sol-gel method and doped with dysprosium and praseodymium were photocatalytically active for decomposition of metazachlor. The highest degradation rate of metazachlor was observed when Pr-TiO2 treated at 450ºC (8h) was used. The photocatalytic LED-based treatment of wastewater effluent from plywood mill using commercially available TiO2 was demonstrated to be promising post-treatment method (72% of COD and 60% of TOC was decreased after 60 min of irradiation). The TiO2 coatings prepared by atomic layer deposition technique on aluminium foam were photocatalytically active for degradation of formic and phenol, however suppression of activity was observed. Photocatalytic activity of TiO2/SiO2 films doped with gold bipyramid-like nanoparticles was about two times higher than reference, which was not the case when gold nanospheres were used.
Resumo:
A água superficial para posterior consumo humano, tem de passar por diversas etapas de tratamento, de forma a dar cumprimento aos requisitos da legislação vigente, decreto-Lei n.º 306/2007 de 27 de Agosto. Como resultado do referido tratamento produzem-se resíduos, nomeadamente, as lamas de clarificação de água. De acordo com a estratégia da União Europeia, a deposição em aterro destas lamas apenas deverá ser efectuada em situações excepcionais ou temporárias. A procura de uma solução ambientalmente mais aceitável para o destino final a atribuir a estas lamas de clarificação de água deverá ser, um dos objectivos das empresas abastecedoras de água para consumo humano. Com o intuito de verificar a possibilidade de utilização das lamas produzidas nas Estações de Tratamento de Água (ETA) em solos agrícolas, realizaram-se testes ecotoxicológicos para avaliar a capacidade de germinação de sementes de alface (Lactuca sativa). Foram igualmente realizadas determinações de alguns metais nos lixiviados, por espectrofotometria de absorção atómica com atomização por chama e por Câmara de grafite. O cádmio e o chumbo por imposição da legislação aplicável aos géneros alimentícios, Regulamento (CE) 1881/2006 de 19 de Dezembro e o alumínio e o ferro por estarem presentes nos tratamentos de algumas das águas superficiais em estudo. As lamas estudadas eram provenientes de ETA com captação de água superficial em rios e albufeiras distintos do norte de Portugal, com utilização de tratamentos também diferentes. Os resultados obtidos com os lixiviados das lamas provenientes das ETA com captações dos rios Ferreira, Ferro e Vizela e Tâmega, evidenciaram inibição da germinação para algumas das diluições testadas. No entanto, não se observou qualquer efeito tóxico para as lamas das ETA com captações da albufeira do Alto Rabagão e dos rios Rabaçal, Douro e Paiva. Dos metais alumínio, cádmio, ferro e chumbo determinados nos lixiviados, apenas o alumínio estava acima do limite de detecção. No entanto, não foi possível estabelecer qualquer correlação entre o tratamento aplicado à água superficial nas várias ETA com a concentração do alumínio nem com os resultados dos ensaios ecotoxicológicos. Não obstante, parece haver relação entre a proximidade geográfica do local de captação de água e os resultados dos bioensaios.