958 resultados para Recurrence theorem
Resumo:
For finite Moufang loops, we prove an analog of the first Sylow theorem giving a criterion for the existence of a p-Sylow subloop. We also find the maximal order of p-subloops in the Moufang loops that do not possess p-Sylow subloops. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.
Resumo:
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
Resumo:
Let R be a noncommutative central simple algebra, the center k of which is not absolutely algebraic, and consider units a,b of R such that {a,a(b)} freely generate a free group. It is shown that such b can be chosen from suitable Zariski dense open subsets of R, while the a can be chosen from a set of cardinality \k\ (which need not be open).
Resumo:
We prove the semi-Riemannian bumpy metric theorem using equivariant variational genericity. The theorem states that, on a given compact manifold M, the set of semi-Riemannian metrics that admit only nondegenerate closed geodesics is generic relatively to the C(k)-topology, k=2, ..., infinity, in the set of metrics of a given index on M. A higher-order genericity Riemannian result of Klingenberg and Takens is extended to semi-Riemannian geometry.
Resumo:
In this work, we show for which odd-dimensional homotopy spherical space forms the Borsuk-Ulam theorem holds. These spaces are the quotient of a homotopy odd-dimensional sphere by a free action of a finite group. Also, the types of these spaces which admit a free involution are characterized. The case of even-dimensional homotopy spherical space forms is basically known.
Resumo:
The famous Herbrand's theorem of mathematical logic plays an important role in automated theorem proving. In the first part of this article, we recall the theorem and formulate a number of natural decision problems related to it. Somewhat surprisingly, these problems happen to be equivalent. One of these problems is the so-called simultaneous rigid E-unification problem. In the second part, we survey recent result on the simultaneous rigid E-unification problem.
Resumo:
Asymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.
Resumo:
Bellman's methods for dynamic optimization constitute the present mainstream in economics. However, some results associated with optimal controI can be particularly usefuI in certain problems. The purpose of this note is presenting such an example. The value function derived in Lucas' (2000) shopping-time economy in Infiation and Welfare need not be concave, leading this author to develop numerical analyses to determine if consumer utility is in fact maximized along the balanced path constructed from the first order conditions. We use Arrow's generalization of Mangasarian's results in optimal control theory and develop sufficient conditions for the problem. The analytical conclusions and the previous numerical results are compatible .
Resumo:
It is shown that, for almost every two-player game with imperfect monitoring, the conclusions of the classical folk theorem are false. So, even though these games admit a well-known approximate folk theorem, an exact folk theorem may only be obtained for a measure zero set of games. A complete characterization of the efficient equilibria of almost every such game is also given, along with an inefficiency result on the imperfect monitoring prisoner s dilemma.
Resumo:
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of fixed order controllers for a class of time delay systems. We extend results of the polynomial case to quasipolynomials using the property of interlacing in high frequencies of the class of time delay systems considered. (C) 2003 Elsevier B.V. All rights reserved.