929 resultados para Rectifying Potassium Channels


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of mu-opioid receptors by application of morphine or D-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of mu-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that mu-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals. (C) 1999 IBRO. Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human ether-a-go-go-related gene (hERG) encodes the voltage-gated K+ channel, hERG (Kv11.1). This channel passes the rapidly-activating delayed rectifier K+ current (IKr), which is important for cardiac repolarization. A reduction in IKr due to loss-of-function mutations or drug interactions causes long QT syndrome (LQTS), which can lead to cardiac arrhythmias and sudden cardiac death. The density of hERG channels in the plasma membrane is a key determinant of normal physiological function, and is balanced by trafficking to and from the cell surface. Many LQTS-associated hERG mutations result in a trafficking deficiency of otherwise functional channels. Thus, elucidating mechanisms of hERG regulation at the plasma membrane is useful for the prevention and treatment of LQTS. We previously demonstrated that M3 muscarinic receptor activation increases mature hERG expression through a Gq protein-dependent protein kinase C (PKC) pathway. In addition to conventional Gq protein-coupling, M3 receptors recruit β-arrestins upon agonist binding. Traditionally known for their role in receptor desensitization and internalization, β-arrestins also act as adaptor proteins to facilitate G protein-independent signaling. In the present work, I investigated the exclusive effect of β-arrestin signaling on hERG expression by utilizing an arrestin-biased M3 designer receptor (M3D-arr) exclusively activated by clozapine-N-oxide (CNO). By expressing M3D-arr in hERG-HEK cells and treating with CNO under various conditions, I found that M3D-arr activation increased mature hERG expression and current. Within this paradigm, M3D-arr recruited β-arrestin to the plasma membrane, and promoted the PI3K-dependent activation of Akt. I further found that the activated Akt acted through phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) and Rab11 to facilitate endosomal recycling of hERG channels to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 degrees C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d(33) coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 degrees C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last couple of decades, many methods for synchronizing chaotic systems have been proposed with communications applications in view. Yet their performance has proved disappointing in face of the nonideal character of usual channels linking transmitter and receiver, that is, due to both noise and signal propagation distortion. Here we consider a discrete-time master-slave system that synchronizes despite channel bandwidth limitations and an allied communication system. Synchronization is achieved introducing a digital filter that limits the spectral content of the feedback loop responsible for producing the transmitted signal. Copyright (C) 2009 Marcio Eisencraft et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A considerable portion of Brazil's commercial eucalypt plantations is located in areas Subjected to periods of water deficit and grown in soils with low natural fertility, particularly poor In potassium. Potassium is influential in controlling water relations of plants. The objective of this study was to verify the influence of potassium fertilization and soil water potential (psi(w)) oil the dry matter production and oil water relations Of eucalypt seedlings grown under greenhouse conditions. the experimental units were arranged in 4x4x2 randomized blocks factorial design, as follow: four species of Eucalyptus (Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus camaldulensis and hybrid Eucalyptus grandis x Eucalyptus urophylla), four dosages of K (0, 50, 100 and 200 mg dm(-3)) and two soil water potentials (-0.01 M Pa and -0.1 M Pa). Plastic containers with 15 cm diameter and 18 cm height, with Styrofoam base, containing 3.0 dm(3) of soil and two plants per container were used. Soil water potential was kept at -0.01 MPa for 40 days after seeding. Afterward, the experimental units were divided into two groups: in one group the potential was kept at 0.01 MPa, and in the other one, at -0.10 MPa. Sol I water potential was control led gravimetrically twice a day with water replacement until the desired potential was reestablished. A week before harvesting, the leaf water potential (psi), the photosynthetic rate (A), the stomatal conductance (gs) and the transpiration rate were evaluated. The last week before harvesting, the mass of the containers was recorded daily before watering to determine the consumption of water by the plants. After harvesting, total dry matter and leaf area were evaluated. the data were Submitted to analysis of variance, to Tukey's tests and regression analyses. The application of K influenced A, gs and the transpiration rate. Plants deficient in K showed lower A and higher Us and transpiration rates. There were no statistical differences in A, gs and transpiration rates ill plants with and Without water deficit. The addition of K reduced the consumption of water per unit of leaf area and, in general, plants submitted to water deficit presented a lower consumption of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title salt, K(+)center dot C(4)H(7)BF(3)O(-), the K atom is surrounded by six anions making close contacts through seven F [K center dot center dot center dot F = 2.779 (1)-3.048 (1) angstrom] and two O [K center dot center dot center dot O = 2.953 (2) and 3.127 (2) angstrom] atoms in a trivacant fac-vIC-9 icosahedral coordination geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through direct transmetalation reaction of Z-vinylic tellurides with nBuLi was observed the unexpected isomerization of double bonds leading to potassium E-vinyltrifluoroborates salts in low to moderate yields. Using EPR spin trapping experiments the radical species that promoted the stereoinversion of Z-vinylic organometallic species during the preparation of potassium vinyltrifluoroborate salts was identified. The experiments support the proposed mechanism, which is based on the homolytic cleavage of the TenBu bond.