923 resultados para Real Options Theory
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
Based on the theory of the pumping well test, the transient injection well test was suggested in this paper. The design method and the scope of application are discussed in detail. The mathematical models are developed for the short-time and long-time transient injection test respectively. A double logarithm type curve matching method was introduced for analyzing the field transient injection test data. A set of methods for the transient injection test design, experiment performance and data analysis were established. Some field tests were analyzed, and the results show that the test model and method are suitable for the transient injection test and can be used to deal with the real engineering problems.
Resumo:
In this paper, a real-time and in situ optical measuring system is reported to observe high-velocity deformations of samples subjected to impact loading. The system consists of a high-speed camera, a He-Ne laser, a frame grabber, a synchronization device and analysis software based on digital correlation theory. The optical system has been adapted to investigate the dynamic deformation field and its evolution in notched samples loaded by an split Hopkinson tension bar, with a resolution of 50 pin and an accuracy of 0.5 mum. Results obtained in experiments are discussed and compared with numerical simulations. It is shown that the measuring system is effective and valid.
Resumo:
The variational approach to the closure problem of turbulence theory, proposed in an earlier article [Phys. Fluids 26, 2098 (1983); 27, 2229 (1984)], is extended to evaluate the flatness factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in the perturbation solution of the Liouville equation have to be considered. Most closure methods discard these higher-order terms and fail to explain the intermittency phenomenon. The computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15 and has the same order of magnitude as the experimental data of real turbulent flows. The intermittency phenomenon does not necessarily negate the Kolmogorov k−5/3 inertial range spectrum. The Kolmogorov k−5/3 law and the high degree of intermittency can coexist as two consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory [J. Fluid Mech. 62, 305 (1974)] cannot be disqualified merely because the energy dissipation rate fluctuates.
Resumo:
A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
Previous research has shown a strong positive correlation between short-term persistence and long-term output growth as well as between depreciation rates and long-term output growth. This evidence, therefore, contradicts the standard predictions from traditional neoclassical or AK-type growth models with exogenous depreciation. In this paper, we first confirm these findings for a larger sample of 101 countries. We then study the dynamics of growth and persistence in a model where both the depreciation rate and growth are endogenous and procyclical. We find that the model s predictions become consistent with the empirical evidence on persistence, long-term growth and depreciation rates.
Resumo:
A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.
Resumo:
In this thesis we uncover a new relation which links thermodynamics and information theory. We consider time as a channel and the detailed state of a physical system as a message. As the system evolves with time, ever present noise insures that the "message" is corrupted. Thermodynamic free energy measures the approach of the system toward equilibrium. Information theoretical mutual information measures the loss of memory of initial state. We regard the free energy and the mutual information as operators which map probability distributions over state space to real numbers. In the limit of long times, we show how the free energy operator and the mutual information operator asymptotically attain a very simple relationship to one another. This relationship is founded on the common appearance of entropy in the two operators and on an identity between internal energy and conditional entropy. The use of conditional entropy is what distinguishes our approach from previous efforts to relate thermodynamics and information theory.
Resumo:
Methods that exploit the intrinsic locality of molecular interactions show significant promise in making tractable the electronic structure calculation of large-scale systems. In particular, embedded density functional theory (e-DFT) offers a formally exact approach to electronic structure calculations in which the interactions between subsystems are evaluated in terms of their electronic density. In the following dissertation, methodological advances of embedded density functional theory are described, numerically tested, and applied to real chemical systems.
First, we describe an e-DFT protocol in which the non-additive kinetic energy component of the embedding potential is treated exactly. Then, we present a general implementation of the exact calculation of the non-additive kinetic potential (NAKP) and apply it to molecular systems. We demonstrate that the implementation using the exact NAKP is in excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures.
Next, we introduce density-embedding techniques to enable the accurate and stable calculation of correlated wavefunction (CW) in complex environments. Embedding potentials calculated using e-DFT introduce the effect of the environment on a subsystem for CW calculations (WFT-in-DFT). We demonstrate that WFT-in-DFT calculations are in good agreement with CW calculations performed on the full complex.
We significantly improve the numerics of the algorithm by enforcing orthogonality between subsystems by introduction of a projection operator. Utilizing the projection-based embedding scheme, we rigorously analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using CWs, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We develop an algorithm which corrects this term and demonstrate the accuracy of this corrected embedding scheme.
Resumo:
JA-925
Resumo:
Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.
Resumo:
An experimental method combined with boundary layer theory is given for evaluating the added mass of a sphere moving along the axis of a circular cylinder filled with water or oil. The real fluid effects are separated from ideal fluid effects.
The experimental method consists essentially of a magnetic steel sphere propelled from rest by an electromagnetic coil in which the current is accurately controlled so that it only supplies force for a short time interval which is within the laminar flow regime of the fluid. The motion of the sphere as a function of time is recorded on single frame photographs using a short-arc multiple flash lamp with accurately controlled time intervals between flashes.
A concept of the effect of boundary layer displacement on the fluid flow around a sphere is introduced to evaluate the real fluid effects on the added mass. Surprisingly accurate agreement between experiment and theory is achieved.