848 resultados para Random Variable
Resumo:
The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37A degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55A degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.
Resumo:
Objective: This study assessed the percentage of the amount of dentifrice loaded onto the toothbrush that is ingested by children, taking into account age, the amount of dentifrice used during toothbrushing, and the dentifrice flavor. Methods: The sample consisted of 155 children of both genders attending public kindergartens and schools in Bauru, Brazil, divided into 5 groups (n = 30-32) of children aged 2, 3, 4, 5 and 6 years old. The dentifrices used were Sorriso(TM) (1219 ppm F, peppermint-flavored) and Tandy(TM) (959 ppm F, tutti-frutti-flavored). The assessment of fluoride intake from dentifrices was carried out six times for each child, using 0.3, 0.6, and 1.2 g of each dentifrice, following a random, crossover distribution. Brushing was performed by the children or their parents/caregivers according to the home habits and under the observation of the examiner. Fluoride present in the expectorant and on toothbrush was analyzed with an ion-specific electrode after HMDS-facilitated diffusion. Fluoride ingestion was indirectly derived. Results were analyzed by 3-way repeated-measures anova and Tukey`s tests (P < 0.05) using the percent dentifrice ingested as response variable. Results: Age and percent dentifrice ingested for both dentifrices, and the three amounts used were inversely related (P < 0.0001). Percent dentifrice ingested was significantly higher after the use of Tandy(TM) under all conditions of the study when compared with Sorriso(TM) (P < 0.0001). Significant differences were observed when brushing with 0.3 g when compared with 1.2 g, for both dentifrices tested (P < 0.05). Conclusions: The results indicate that all variables tested must be considered in preventive measures aiming to reduce the amount of fluoride ingested by young children.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
The calibre of the Foramen of Panizza in Crocodylus porosus is variable and under adrenergic control
Resumo:
The foramen of Panizza is located within the outflow tract of the crocodilian heart, between the left and right aortas. It has been suggested that the foremen of Panizza has a variable calibre, which could explain the profound changes in the distribution of flows and pressure profiles recorded in the right and left aortas. We investigated this possibility using a modified in-situ perfused heart preparation in combination with isolated strip preparations from the outflow tract. In the perfused heart preparation, bolus injections of adrenaline increased the resistance in the foramen of Panizza, indicating a decrease in its diameter. Isolated strip preparations from the outflow tract showed a concentration-dependent increase in tension in response to adrenaline, while vasoactive intestinal polypeptide caused a relaxation in adrenaline pre-contracted strip preparations. We propose that an increase in the diameter of the foremen of Panizza may be important during pulmonary to systemic shunts to allow blood to flow from the left to right aorta (reverse foramen flow) in order to supply the carotid and coronary arteries. During non-shunting conditions, a constricted foramen may prevent excess flow from the right to left aorta during diastole.
Resumo:
A concept of polarization entanglement for continuous variables is introduced. For this purpose the Stokes-parameter operators and the associated Poincare sphere, which describe the quantum-optical polarization properties of light, are defined and their basic properties are reviewed. The general features of the Stokes operators are illustrated by evaluation of their means and variances for a range of simple polarization states. Some of the examples show polarization squeezing, in which the variances of one or more Stokes parameters are smaller than the coherent-state value. The main object of the paper is the application of these concepts to bright squeezed light. It is shown that a light beam formed by interference of two orthogonally polarized quadrature-squeezed beams exhibits squeezing in some of the Stokes parameters. Passage of such a primary polarization-squeezed beam through suitable optical components generates a pair of polarization-entangled light beams with the nature of a two-mode squeezed state. Implementation of these schemes using the double-fiber Sagnac interferometer provides an efficient method for the generation of bright nonclassical polarization states. The important advantage of these nonclassical polarization states for quantum communication is the possibility of experimentally determining all of the relevant conjugate variables of both squeezed and entangled fields using only linear optical elements followed by direct detection.
Resumo:
An equivalent unit cell waveguide approach (WGA) is described to study the behavior of a multilayer reflect array of variable-size patches/dipoles, The approach considers normal incidence of a plane wave on an infinite periodic array of identical radiating elements and introduces an equivalent unit cell waveguide to obtain the reflection coefficient. A field matching technique and method of moments (MoM) is used to determine fields in different layers of the equivalent waveguide. Good agreements for the phase of the reflection coefficient between the proposed model and those published in selected literatures are obtained. (C) 2002 Wiley Periodicals, Inc.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
C,C-Dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene NS-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-,beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G*) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-Bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C= C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G*) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.
Resumo:
Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
Resumo:
Objective: To assess the intrarater and interrater reliability among rheumatologists of a standardised protocol for measurement of shoulder movements using a gravity inclinometer. Methods: After instruction, six rheurnatologists independently assessed eight movements of the shoulder, including total and glenohumeral flexion, total and glenohumeral abduction, external rotation in neutral and in abduction, internal rotation in abduction and hand behind back, in random order in six patients with shoulder pain and stiffness according to a 6x6 Latin square design using a standardised protocol. These assessments were then repeated. Analysis of variance was used to partition total variability into components of variance in order to calculate intraclass correlation coefficients (ICCs). Results: The intrarater and interrater reliability of different shoulder movements varied widely. The movement of hand behind back and total shoulder flexion yielded the highest ICC scores for both intrarater reliability (0.91 and 0.83, respectively) and interrater reliability (0.80 and 0.72, respectively). Low ICC scores were found for the movements of glenohumeral abduction, external rotation in abduction, and internal rotation in abduction (intrarater ICCs 0.35, 0.43, and 0.32, respectively), and external rotation in neutral, external rotation in abduction, and internal rotation in abduction (interrater ICCs 0.29, 0.11, and 0.06, respectively). Conclusions: The measurement of shoulder movements using a standardised protocol by rheumatologists produced variable intrarater and interrater reliability. Reasonable reliability was obtained only for the movement of hand behind back and total shoulder flexion.