972 resultados para Radio wave propagation
Resumo:
Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.
Resumo:
Significant interest in nanotechnology, is stimulated by the fact that materials exhibit qualitative changes of properties when their dimensions approach ”finite-sizes”. Quantization of electronic, optical and acoustic energies at the nanoscale provides novel functions, with interests spanning from electronics and photonics to biology. The present dissertation involves the application of Brillouin light scattering (BLS) to quantify and utilize material displacementsrnfor probing phononics and elastic properties of structured systems with dimensions comparable to the wavelength of visible light. The interplay of wave propagation with materials exhibiting spatial inhomogeneities at sub-micron length scales provides information not only about elastic properties but also about structural organization at those length scales. In addition the vector nature of q allows, for addressing the directional dependence of thermomechanical properties. To meet this goal, one-dimensional confined nanostructures and a biological system possessing high hierarchical organization were investigated. These applications extend the capabilities of BLS from a characterization tool for thin films to a method for unravelingrnintriguing phononic properties in more complex systems.
Resumo:
The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.
Resumo:
Finite element techniques for solving the problem of fluid-structure interaction of an elastic solid material in a laminar incompressible viscous flow are described. The mathematical problem consists of the Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian formulation coupled with a non-linear structure model, considering the problem as one continuum. The coupling between the structure and the fluid is enforced inside a monolithic framework which computes simultaneously for the fluid and the structure unknowns within a unique solver. We used the well-known Crouzeix-Raviart finite element pair for discretization in space and the method of lines for discretization in time. A stability result using the Backward-Euler time-stepping scheme for both fluid and solid part and the finite element method for the space discretization has been proved. The resulting linear system has been solved by multilevel domain decomposition techniques. Our strategy is to solve several local subproblems over subdomain patches using the Schur-complement or GMRES smoother within a multigrid iterative solver. For validation and evaluation of the accuracy of the proposed methodology, we present corresponding results for a set of two FSI benchmark configurations which describe the self-induced elastic deformation of a beam attached to a cylinder in a laminar channel flow, allowing stationary as well as periodically oscillating deformations, and for a benchmark proposed by COMSOL multiphysics where a narrow vertical structure attached to the bottom wall of a channel bends under the force due to both viscous drag and pressure. Then, as an example of fluid-structure interaction in biomedical problems, we considered the academic numerical test which consists in simulating the pressure wave propagation through a straight compliant vessel. All the tests show the applicability and the numerical efficiency of our approach to both two-dimensional and three-dimensional problems.
Resumo:
A method for automatic scaling of oblique ionograms has been introduced. This method also provides a rejection procedure for ionograms that are considered to lack sufficient information, depicting a very good success rate. Observing the Kp index of each autoscaled ionogram, can be noticed that the behavior of the autoscaling program does not depend on geomagnetic conditions. The comparison between the values of the MUF provided by the presented software and those obtained by an experienced operator indicate that the procedure developed for detecting the nose of oblique ionogram traces is sufficiently efficient and becomes much more efficient as the quality of the ionograms improves. These results demonstrate the program allows the real-time evaluation of MUF values associated with a particular radio link through an oblique radio sounding. The automatic recognition of a part of the trace allows determine for certain frequencies, the time taken by the radio wave to travel the path between the transmitter and receiver. The reconstruction of the ionogram traces, suggests the possibility of estimating the electron density between the transmitter and the receiver, from an oblique ionogram. The showed results have been obtained with a ray-tracing procedure based on the integration of the eikonal equation and using an analytical ionospheric model with free parameters. This indicates the possibility of applying an adaptive model and a ray-tracing algorithm to estimate the electron density in the ionosphere between the transmitter and the receiver An additional study has been conducted on a high quality ionospheric soundings data set and another algorithm has been designed for the conversion of an oblique ionogram into a vertical one, using Martyn's theorem. This allows a further analysis of oblique soundings, throw the use of the INGV Autoscala program for the automatic scaling of vertical ionograms.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.
Resumo:
High-frequency respiratory impedance data measured noninvasively by the high-speed interrupter technique (HIT), particularly the first antiresonance frequency (f(ar,1)), is related to airway wall mechanics. The aim of this study was to evaluate the feasibility and repeatability of HIT in unsedated pre-term infants, and to compare values of f(ar,1) from 18 pre-term (post-conceptional age 32-37 weeks, weight 1,730-2,910 g) and 18 full-term infants (42-47 weeks, 3,920-5,340 g). Among the pre-term infants, there was good short-term repeatability of f(ar,1) within a single sleep epoch (mean (sd) coefficient of variance: 8 (1.7)%), but 95% limits of agreement for repeated measures of f(ar,1) after 3-8 h were relatively wide (-41 Hz; 37 Hz). f(ar,1) was significantly lower in pre-term infants (199 versus 257 Hz), indicating that wave propagation characteristics in pre-term airways are different from those of full-term infants. The present authors suggest that this is consistent with developmental differences in airway wall structure and compliance, including the influence of the surrounding tissue. Since flow limitation is determined by wave propagation velocity and airway cross-sectional area, it was hypothesised that the physical ability of the airways to carry large flows is fundamentally different in pre-term than in full-term infants.
Resumo:
The research presented in this thesis was conducted to further the development of the stress wave method of nondestructively assessing the quality of wood in standing trees. The specific objective of this research was to examine, in the field, use of two stress wave nondestructive assessment techniques. The first technique examined utilizes a laboratory-built measurement system consisting of commercially available accelerometers and a digital storage oscilloscope. The second technique uses a commercially available tool that incorporates several technologies to determine speed of stress wave propagation in standing trees. Field measurements using both techniques were conducted on sixty red pine trees in south-central Wisconsin and 115 ponderosa pine trees in western Idaho. After in-situ measurements were taken, thirty tested red pine trees were felled and a 15-foot-long butt log was obtained from each tree, while all tested ponderosa pine trees were felled and an 8 1/2 -foot-long butt log was obtained, respectively. The butt logs were sent to the USDA Forest Products Laboratory and nondestructively tested using a resonance stress wave technique. Strong correlative relationships were observed between stress wave values obtained from both field measurement techniques. Excellent relationships were also observed between standing tree and log speed-of-sound values.
Resumo:
Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena.
Resumo:
An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (εr>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.
Resumo:
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO3 waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (ca. 50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color-encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kfn. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from ca. 700 dB/m at 400 kHz and a power of n = 1-2 in coarse-grained sands to few decibels per meter and n ? 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.
Resumo:
Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (-50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color -encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kF. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from -700 dB/m at 400 kHz and a power of n=1-2 in coarse-grained sands to few decibels per meter and n :s; 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.
Resumo:
La fisuración iniciada en la superficie de los pavimentos asfálticos constituye uno de los más frecuentes e importantes modos de deterioro que tienen lugar en los firmes bituminosos, como han demostrado los estudios teóricos y experimentales llevados a cabo en la última década. Sin embargo, este mecanismo de fallo no ha sido considerado por los métodos tradicionales de diseño de estos firmes. El concepto de firmes de larga duración se fundamenta en un adecuado seguimiento del proceso de avance en profundidad de estos deterioros y la intervención en el momento más apropiado para conseguir mantenerlos confinados como fisuras de profundidad parcial en la capa superficial más fácilmente accesible y reparable, de manera que pueda prolongarse la durabilidad y funcionalidad del firme y reducir los costes generalizados de su ciclo de vida. Por lo tanto, para la selección de la estrategia óptima de conservación de los firmes resulta esencial disponer de metodologías que posibiliten la identificación precisa in situ de la fisuración descendente, su seguimiento y control, y que además permitan una determinación fiable y con alto rendimiento de su profundidad y extensión. En esta Tesis Doctoral se presentan los resultados obtenidos mediante la investigación sistemática de laboratorio e in situ llevada a cabo para la obtención de datos sobre fisuración descendente en firmes asfálticos y para el estudio de procedimientos de evaluación de la profundidad de este tipo de fisuras empleando técnicas de ultrasonidos. Dichos resultados han permitido comprobar que la metodología no destructiva propuesta, de rápida ejecución, bajo coste y sencilla implementación (principalmente empleada hasta el momento en estructuras metálicas y de hormigón, debido a las dificultades que introduce la naturaleza viscoelástica de los materiales bituminosos) puede ser aplicada con suficiente fiabilidad y repetibilidad sobre firmes asfálticos. Las medidas resultan asimismo independientes del espesor total del firme. Además, permite resolver algunos de los inconvenientes frecuentes que presentan otros métodos de diagnóstico de las fisuras de pavimentos, tales como la extracción de testigos (sistema destructivo, de alto coste y prolongados tiempos de interrupción del tráfico) o algunas otras técnicas no destructivas como las basadas en medidas de deflexiones o el georradar, las cuales no resultan suficientemente precisas para la investigación de fisuras superficiales. Para ello se han realizado varias campañas de ensayos sobre probetas de laboratorio en las que se han estudiado diferentes condiciones empíricas como, por ejemplo, distintos tipos de mezclas bituminosas en caliente (AC, SMA y PA), espesores de firme y adherencias entre capas, temperaturas, texturas superficiales, materiales de relleno y agua en el interior de las grietas, posición de los sensores y un amplio rango de posibles profundidades de fisura. Los métodos empleados se basan en la realización de varias medidas de velocidad o de tiempo de transmisión del pulso ultrasónico sobre una única cara o superficie accesible del material, de manera que resulte posible obtener un coeficiente de transmisión de la señal (mediciones relativas o autocompensadas). Las mediciones se han realizado a bajas frecuencias de excitación mediante dos equipos de ultrasonidos diferentes dotados, en un caso, de transductores de contacto puntual seco (DPC) y siendo en el otro instrumento de contacto plano a través de un material especialmente seleccionado para el acoplamiento (CPC). Ello ha permitido superar algunos de los tradicionales inconvenientes que presenta el uso de los transductores convencionales y no precisar preparación previa de las superficies. La técnica de autocalibración empleada elimina los errores sistemáticos y la necesidad de una calibración local previa, demostrando el potencial de esta tecnología. Los resultados experimentales han sido comparados con modelos teóricos simplificados que simulan la propagación de las ondas ultrasónicas en estos materiales bituminosos fisurados, los cuales han sido deducidos previamente mediante un planteamiento analítico y han permitido la correcta interpretación de dichos datos empíricos. Posteriormente, estos modelos se han calibrado mediante los resultados de laboratorio, proporcionándose sus expresiones matemáticas generalizadas y gráficas para su uso rutinario en las aplicaciones prácticas. Mediante los ensayos con ultrasonidos efectuados en campañas llevadas a cabo in situ, acompañados de la extracción de testigos del firme, se han podido evaluar los modelos propuestos. El máximo error relativo promedio en la estimación de la profundidad de las fisuras al aplicar dichos modelos no ha superado el 13%, con un nivel de confianza del 95%, en el conjunto de todos los ensayos realizados. La comprobación in situ de los modelos ha permitido establecer los criterios y las necesarias recomendaciones para su utilización sobre firmes en servicio. La experiencia obtenida posibilita la integración de esta metodología entre las técnicas de auscultación para la gestión de su conservación. Abstract Surface-initiated cracking of asphalt pavements constitutes one of the most frequent and important types of distress that occur in flexible bituminous pavements, as clearly has been demonstrated in the technical and experimental studies done over the past decade. However, this failure mechanism has not been taken into consideration for traditional methods of flexible pavement design. The concept of long-lasting pavements is based on adequate monitoring of the depth and extent of these deteriorations and on intervention at the most appropriate moment so as to contain them in the surface layer in the form of easily-accessible and repairable partial-depth topdown cracks, thereby prolonging the durability and serviceability of the pavement and reducing the overall cost of its life cycle. Therefore, to select the optimal maintenance strategy for perpetual pavements, it becomes essential to have access to methodologies that enable precise on-site identification, monitoring and control of top-down propagated cracks and that also permit a reliable, high-performance determination of the extent and depth of cracking. This PhD Thesis presents the results of systematic laboratory and in situ research carried out to obtain information about top-down cracking in asphalt pavements and to study methods of depth evaluation of this type of cracking using ultrasonic techniques. These results have demonstrated that the proposed non-destructive methodology –cost-effective, fast and easy-to-implement– (mainly used to date for concrete and metal structures, due to the difficulties caused by the viscoelastic nature of bituminous materials) can be applied with sufficient reliability and repeatability to asphalt pavements. Measurements are also independent of the asphalt thickness. Furthermore, it resolves some of the common inconveniences presented by other methods used to evaluate pavement cracking, such as core extraction (a destructive and expensive procedure that requires prolonged traffic interruptions) and other non-destructive techniques, such as those based on deflection measurements or ground-penetrating radar, which are not sufficiently precise to measure surface cracks. To obtain these results, extensive tests were performed on laboratory specimens. Different empirical conditions were studied, such as various types of hot bituminous mixtures (AC, SMA and PA), differing thicknesses of asphalt and adhesions between layers, varied temperatures, surface textures, filling materials and water within the crack, different sensor positions, as well as an ample range of possible crack depths. The methods employed in the study are based on a series of measurements of ultrasonic pulse velocities or transmission times over a single accessible side or surface of the material that make it possible to obtain a signal transmission coefficient (relative or auto-calibrated readings). Measurements were taken at low frequencies by two short-pulse ultrasonic devices: one equipped with dry point contact transducers (DPC) and the other with flat contact transducers that require a specially-selected coupling material (CPC). In this way, some of the traditional inconveniences presented by the use of conventional transducers were overcome and a prior preparation of the surfaces was not required. The auto-compensating technique eliminated systematic errors and the need for previous local calibration, demonstrating the potential for this technology. The experimental results have been compared with simplified theoretical models that simulate ultrasonic wave propagation in cracked bituminous materials, which had been previously deduced using an analytical approach and have permitted the correct interpretation of the aforementioned empirical results. These models were subsequently calibrated using the laboratory results, providing generalized mathematical expressions and graphics for routine use in practical applications. Through a series of on-site ultrasound test campaigns, accompanied by asphalt core extraction, it was possible to evaluate the proposed models, with differences between predicted crack depths and those measured in situ lower than 13% (with a confidence level of 95%). Thereby, the criteria and the necessary recommendations for their implementation on in-service asphalt pavements have been established. The experience obtained through this study makes it possible to integrate this methodology into the evaluation techniques for pavement management systems.