904 resultados para RESIN-BASED COMPOSITE


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Light dynamics is a relevant phenomenon with respect to esthetic restorations, as incorrect analysis of the optical behavior of natural dentition may lead to potential clinical failures. The nature of incident light plays a major role in determining the amount of light transmission or reflection, and how an object is perceived depends on the nature of the light source. Natural teeth demonstrate translucency, opalescence, and fluorescence, all of which must be replicated by restorative materials in order to achieve clinical success. Translucency is the intermediary between complete opacity and complete transparency, making its analysis highly subjective. In nature, the translucency of dental enamel varies from tooth to tooth, and from individual to individual. Therefore, four important factors must be considered when appraising translucency. Presence or absence of color, thickness of the enamel, degree of translucency, and surface texture are essential components when determining translucency. State-of-the-art resin composites provide varying shades and opacities that deliver a more faithful reproduction of the chromaticity and translucency/opacity of enamel and dentin. This enables the attainment of individualized and customized composite restorations. The objective of this article is to provide a review of the phenomena of translucency and opacity in the natural dentition and composite resins, under the scope of optics, and to describe how to implement these concepts in the clinical setting.CLINICAL SIGNIFICANCEChoosing composite resins, based on optical properties alone, in order to mimic the properties of natural tooth structures, does not necessarily provide a satisfactory esthetic outcome. In many instances, failure ensues from incorrect analysis of the optical behaviors of the natural dentition as well as the improper use of restorative materials. Therefore, it is necessary to implement a technique that enables a restorative material to be utilized to its full potential to correctly replicate the natural teeth.(J Esthet Restor Dent 23:73-88, 2011).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems.Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid + silanization + adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30 mu m SiO2 + silanization (ESPE(R)-Sil) + adhesive (Visio(TM)-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H3PO4 + Clearfil Porcelain Bond Activator + Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (mu TBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1 mm/min). Failure types were analyzed under an optical microscope and SEM.Results. mu TBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p < 0.001) repair bond strength (19.8 +/- 3.8 MPa) than those of CJ and CL (12.4 +/- 4.7 and 9.9 +/- 2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5 +/- 3.1 MPa) than those of PR (12.1 +/- 2.6 MPa) (p < 0.01) and CL (4.2 +/- 2.1 MPa) (p < 0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%).Significance. Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This in vitro study evaluated the cytotoxic effects of a restorative resin composite applied to an immortalized odontoblast-cell line (MDPC-23). Seventy-two round resin discs (2-mm thick and 4 mm in diameter) were light-cured for 20 or 40 seconds and rinsed, or not, with PBS and culture medium. The resin discs were divided into four experimental groups: Group 1: Z-100/20 seconds; Group 2: Z-100/20 seconds/rinsed; Group 3: Z100/40 seconds; Group 4: Z-100/40 seconds/rinsed. Circular filter paper was used as a control material (Group 5). The round resin discs and filter papers were placed in the bottom of wells of four 24-well dishes (18 wells for each experimental and control group). MDPC-23 cells (30,000 cells/cm(2)) were plated in the wells and allowed to incubate for 72 hours. The zone of inhibition around the resin discs was measured under inverted light microscopy; the MTT assay was carried out for mitochondrial respiration and cell morphology was measured under SEM. The scores obtained from inhibition zone and MTT assay were analyzed with the Kruskal-Wallis followed by Dunnett tests. In Groups 1, 2, 3 and 4, the thickness of the inhibition zone was 1,593 +/- 12.82 mum, 403 +/- 15.49 mum, 1,516 +/- 9.81 mum and 313 +/- 13.56 mum, respectively. There was statistically significant difference among the experimental and control groups at the 0.05 level of significance. The MTT assay demonstrated that the resin discs of the experimental groups 1, 2, 3 and 4 reduced the cell metabolism by 83%, 40.1%, 75.5% and 24.5%. Only between the Groups 2 and 4 was there no statistically significant difference for mitochondrial respiration. Close to the resin discs, the MDPC-23 cells exhibited rounded shapes, with only a few cellular processes keeping the cells attached to the substrate or, even disruption of plasma membrane. Adjacent to the inhibition zone, the cultured cells exhibited multiple fine cellular processes on the cytoplasmic membrane organized in epithelioid nodules, similar to the morphology observed to the control group. Based on the results, the authors may conclude that the Z-100 resin composite light cured for 20 seconds was more cytopathic to MDPC-23 cells than Z-100 light cured for 40 seconds. The cytotoxic effects of the resin discs decreased after rinsing them with PBS and culture medium. This was confirmed by MTT assay and upon evaluation of the inhibition zone, which was narrower following rinsing of the resin discs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. Materials and Methods: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1 - sandblasting with 110-μm aluminum oxide particles; G2 - Rocatec System: tribochemicai silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3 - CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37°C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm 2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. Results: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8 ± 3.2; (G2) 30.6 ± 4.5; (G3) 33.0 ± 5.0. G2 and 63 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. Conclusion: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60°C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU. © 2009 Pleiades Publishing, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Color stability of restorative materials is essential for longevity of esthetic composite restoration over time. The aim of this investigation was assess the effect of prior water immersion on the color stability of a composite resin to red wine staining. Seventy disccshaped specimens (6mm x 1.5mm) were carried out and randomized in 7 groups (n = 10), according to distilled water immersion time at 0 (control), 24, 48, 72,120,192, and 240 h. Baseline color was measured according to the ciel*a*b* system using a reflection spectrophotometer(uvc2450, shimadzu).After that, the specimens were storage in red wine for 7 days. Color difference (∆e) after aging was calculated based on the color coordinates before(baseline) and after storage period.Data were subjected to onecway anova(alpha=0.05).The different times of immersion in.Water before to the red wine storage showed similar behavior on the color stability, without statistical difference compared to control group, immersed directly in the wine(p=0.7057).The previous water uptake of composite resin evaluated did not decrease the susceptibility to red wine staining.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a study on the potential use of coconut fiber as material to produce particleboards, with two different densities (0.8 g/cm(3) and 1.0 g/cm3), using castor oil-based polyurethane adhesive and urea-formaldehyde. The quality of the product that can be produced by industry was evaluated according to the normative NBR 14.810:2006, where density, thickness swell (TS), absorption, modulus of elasticity (MOE), modulus of rupture (MOR) in static bending and internal bond (IB) were determined. From the results, there was a decrease in TS and increase in MOR of coconut fiber panels with polyurethane resin panels compared with coconut fiber and resin urea-formaldehyde. Scanning microscopy electronic images (SEM) indicated that castor oil-based polyurethane adhesive occupies the gaps between the particles, a factor that contributes to improved physical and mechanical properties of the panels. The assessment of durability through accelerated aging tests shows that panels protected with waterproofing material can be used in environments that have contact with moisture. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The objective of this study was to compare the microhardness of two resin composites (microhybrid and nanoparticles). Light activation was performed with argon ion laser 1.56J (L) and halogen light 2.6J (H) was used as control. Measurements were taken on the irradiated surfaces and those opposite them, at thicknesses of 1, 2 and 3 mm. To evaluate the quality of polymerization, the percentages of maximum hardness were calculated (PMH). For statistical analysis the ANOVA and Tukey tests were used (p <= 0.05). To microhybrid was shown that the hardness with laser was inferior to the hardness achieved with halogen light, for both the 1 mm and 2 mm. The nanoparticles polymerized with laser, presented lower hardness even on the irradiated surface, than the same surface light activated with halogen light. The microhybrid attained a minimum PMH of 80% up to the thickness of 2 mm with halogen light, and with laser, only up to 1 mm. The nanoparticles attained a minimum PMH of 80% up to 3 mm thickness with halogen light and with laser this minimum was not obtained at any thickness. Based on these results, it could be concluded that light activation with argon ion laser is contra-indicated for the studied nanoparticles. Published by Elsevier GmbH.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

INTRODUCTION Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study was designed to re-examine a large sample of teeth treated with apical surgery after 5 years. METHODS Patients were recalled 5 years after apical surgery, and treated teeth were classified as healed or not healed based on clinical and radiographic examination. (The latter was performed independently by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re-examined after 5 years (dropout rate = 20.1%). The overall rate of healed cases was 84.5% with a significant difference (P = .0003) when comparing MTA (92.5%) and COMP (76.6%). The evaluation of secondary study parameters yielded no significant difference for healing outcome when comparing subcategories (ie, sex, age, type of tooth treated, post/screw, type of surgery). CONCLUSIONS The results from this prospective nonrandomized clinical study with a 5-year follow-up of 271 teeth indicate that MTA exhibited a higher healing rate than COMP in the longitudinal prognosis of root-end sealing.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fluid flow and fabric compaction during vacuum assisted resin infusion (VARI) of composite materials was simulated using a level set-based approach. Fluid infusion through the fiber preform was modeled using Darcy’s equations for the fluid flow through a porous media. The stress partition between the fluid and the fiber bed was included by means of Terzaghi’s effective stress theory. Tracking the fluid front during infusion was introduced by means of the level set method. The resulting partial differential equations for the fluid infusion and the evolution of flow front were discretized and solved approximately using the finite differences method with a uniform grid discretization of the spatial domain. The model results were validated against uniaxial VARI experiments through an [0]8 E-glass plain woven preform. The physical parameters of the model were also independently measured. The model results (in terms of the fabric thickness, pressure and fluid front evolution during filling) were in good agreement with the numerical simulations, showing the potential of the level set method to simulate resin infusion