1000 resultados para REDES NEURAIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A crescente utilização dos serviços de telecomunicações principalmente sem fio tem exigido a adoção de novos padrões de redes que ofereçam altas taxas de transmissão e que alcance um número maior de usuários. Neste sentido o padrão IEEE 802.16, no qual é baseado o WiMAX, surge como uma tecnologia em potencial para o fornecimento de banda larga na próxima geração de redes sem fio, principalmente porque oferece Qualidade de Serviço (QoS) nativamente para fluxos de voz, dados e vídeo. A respeito das aplicações baseadas vídeo, tem ocorrido um grande crescimento nos últimos anos. Em 2011 a previsão é que esse tipo de conteúdo ultrapasse 50% de todo tráfego proveniente de dispositivos móveis. Aplicações do tipo vídeo têm um forte apelo ao usuário final que é quem de fato deve ser o avaliador do nível de qualidade recebida. Diante disso, são necessárias novas formas de avaliação de desempenho que levem em consideração a percepção do usuário, complementando assim as técnicas tradicionais que se baseiam apenas em aspectos de rede (QoS). Nesse sentido, surgiu a avaliação de desempenho baseada Qualidade de Experiência (QoE) onde a avaliação do usuário final em detrimento a aplicação é o principal parâmetro mensurado. Os resultados das investigações em QoE podem ser usados como uma extensão em detrimento aos tradicionais métodos de QoS, e ao mesmo tempo fornecer informações a respeito da entrega de serviços multimídias do ponto de vista do usuário. Exemplos de mecanismos de controle que poderão ser incluídos em redes com suporte a QoE são novas abordagens de roteamento, processo de seleção de estação base e tráfego condicionado. Ambas as metodologias de avaliação são complementares, e se usadas de forma combinada podem gerar uma avaliação mais robusta. Porém, a grande quantidade de informações dificulta essa combinação. Nesse contexto, esta dissertação tem como objetivo principal criar uma metodologia de predição de qualidade de vídeo em redes WiMAX com uso combinado de simulações e técnicas de Inteligência Computacional (IC). A partir de parâmetros de QoS e QoE obtidos através das simulações será realizado a predição do comportamento futuro do vídeo com uso de Redes Neurais Artificiais (RNA). Se por um lado o uso de simulações permite uma gama de opções como extrapolação de cenários de modo a imitar as mesmas situações do mundo real, as técnicas de IC permitem agilizar a análise dos resultados de modo que sejam feitos previsões de um comportamento futuro, correlações e outros. No caso deste trabalho, optou-se pelo uso de RNAs uma vez que é a técnica mais utilizada para previsão do comportamento, como está sendo proposto nesta dissertação.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Este trabalho propõe a utilização de técnicas de inteligência computacional objetivando identificar e estimar a potencia de ruídos em redes Digital Subscriber Line ou Linhas do Assinante Digital (DSL) em tempo real. Uma metodologia baseada no Knowledge Discovery in Databases ou Descobrimento de Conhecimento em Bases de Dados (KDD) para detecção e estimação de ruídos em tempo real, foi utilizada. KDD é aplicado para selecionar, pré-processar e transformar os dados antes da etapa de aplicação dos algoritmos na etapa de mineração de dados. Para identificação dos ruídos o algoritmo tradicional backpropagation baseado em Redes Neurais Artificiais (RNA) é aplicado objetivando identificar o tipo de ruído em predominância durante a coleta das informações do modem do usuário e da central. Enquanto, para estimação o algoritmo de regressão linear e o algoritmo híbrido composto por Fuzzy e regressão linear foram aplicados para estimar a potência em Watts de ruído crosstalk ou diafonia na rede. Os resultados alcançados demonstram que a utilização de algoritmos de inteligência computacional como a RNA são promissores para identificação de ruídos em redes DSL, e que algoritmos como de regressão linear e Fuzzy com regressão linear (FRL) são promissores para a estimação de ruídos em redes DSL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As Redes da Próxima Geração consistem no desenvolvimento de arquiteturas que viabilizem a continuidade de serviços que proporcionem sempre a melhor conectividade (Always Best Connectivity - ABC) aos usuários móveis com suporte adequado à Qualidade de Experiência (QoE) para aplicações multimídia de alta definição, nesse novo contexto as arquiteturas têm perspectiva orientada a serviços e não a protocolos. Esta tese apresenta uma arquitetura para redes da próxima geração capaz de fornecer acesso heterogêneo sem fio e handover vertical transparente para as aplicações multimídia. A tese considera diferentes tecnologias sem fio e também adota o padrão IEEE 802.21 (Media Independent Handover – MIH) para auxiliar na integração e gerenciamento das redes heterogêneas sem fio. As tecnologias que a arquitetura possui são: IEEE 802.11 (popularmente denominada de WiFi), IEEE 802.16 (popularmente denominada de WiMAX) e LTE (popularmente denominada de redes 4G). O objetivo é que arquitetura tenha a capacidade de escolher entre as alternativas disponíveis a melhor conexão para o momento. A arquitetura proposta apresenta mecanismos de predição de Qualidade de Experiência (Quality of Experience - QoE) que será o parâmetro decisivo para a realização ou não do handover para uma nova rede. A predição para determinar se haverá ou não mudança de conectividade será feita com o uso da inteligência computacional de Redes Neurais Artificiais. Além disso a arquitetura também apresenta um mecanismo de descarte seletivo de pacotes especifico para aplicações multimídia. A proposta é avaliada via simulação utilizando-se o ns-2 (Network Simulator) e os resultados de desempenho são apresentados através das métricas de QoS, de QoE e também visualmente através da exibição de frames dos vídeos transmitidos na arquitetura.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify these parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) have gained ground in the industrial environment, due to the possibility of connecting points of information that were inaccessible to wired networks. However, there are several challenges in the implementation and acceptance of this technology in the industrial environment, one of them the guaranteed availability of information, which can be influenced by various parameters, such as path stability and power consumption of the field device. As such, in this work was developed a tool to evaluate and infer parameters of wireless industrial networks based on the WirelessHART and ISA 100.11a protocols. The tool allows quantitative evaluation, qualitative evaluation and evaluation by inference during a given time of the operating network. The quantitative and qualitative evaluation are based on own definitions of parameters, such as the parameter of stability, or based on descriptive statistics, such as mean, standard deviation and box plots. In the evaluation by inference uses the intelligent technique artificial neural networks to infer some network parameters such as battery life. Finally, it displays the results of use the tool in different scenarios networks, as topologies star and mesh, in order to attest to the importance of tool in evaluation of the behavior of these networks, but also support possible changes or maintenance of the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: Avaliar as redes neurais recorrentes enquanto técnica preditiva para séries temporais em saúde. MÉTODOS: O estudo foi realizado durante uma epidemia de cólera ocorrida no Estado do Ceará, em 1993 e 1994, a partir da sobremortalidade tendo como causa básica as infecções intestinais mal definidas (CID-9). O número mensal de óbitos por essa causa, referente ao período de 1979 a 1995 no Estado do Ceará, foram obtidos do Sistema de Informação de Mortalidade (SIM) do Ministério da Saúde. Estruturou-se uma rede com dois neurônios na camada de entrada, 12 na camada oculta, um neurônio na camada de saída e um na camada de memória. Todas as funções de ativação eram a função logística. O treinamento foi realizado pelo método de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critério para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regressão binomial negativa. RESULTADOS: A predição da rede neural a médio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O número de óbitos registrados foi superior ao limite do intervalo de confiança. Já o modelo regressivo detectou sobremortalidade a partir de março de 1992. CONCLUSÕES: A rede neural se mostrou capaz de predição, principalmente no início do período, como também ao detectar uma alteração concomitante e posterior à ocorrência da epidemia de cólera. No entanto, foi menos precisa do que o modelo de regressão binomial, que se mostrou mais sensível para detectar aberrações concomitantes à circulação da cólera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: Das possíveis alterações decorrentes da lesão por Acidente Vascular Encefálico (AVE) é de evidenciar as alterações de controlo postural (CP) e aumento do stiffness. A intervenção na reabilitação neuro-motora baseia-se na capacidade intrínseca do Sistema Nervoso Central (SNC) compensar danos estruturais através da reorganização das redes neurais. Objectivo(s): Descrever as modificações do comportamento e tempos de ativação dos músculos solear e braquiorradial no início da marcha e primeira subfase das sequências de movimento de sentado para de pé e de pé para sentado. Pretendeu-se apresentar também as modificações do stiffness do cotovelo Métodos: A amostra consistiu em 5 participantes com média de idade de 44 anos, 2 do sexo feminino e 3 do masculino que sofreram um AVE. Foi implementado um programa de reabilitação para cada, por um período de 3 meses, com 2 momentos de avaliação (M0 e M1). A eletromiografia foi recolhida do solear, braquiorradial, biceps e triceps. O dinamómetro isocinético monitorizou o torque e a amplitude do cotovelo na extensão passiva. Foram calculados os tempos de ativação muscular e o valor de stiffness. Resultados: Observou-se nos 5 participantes uma modificação do comportamento dos músculos solear e braquiorradial ipsilesional e contralesional no sentido da inibição de M0 para M1 no sentar levantar. Esta também foi observada na sequência de pé para sentado e no início da marcha, sendo mais variável entre participantes. Verificou-se que o stiffness do membro superior contralesional apresentou uma modificação no sentido da diminuição em todas as amplitudes. O mesmo sucedeu com membro superior ipsilesional sobretudo nas amplitudes intermédias, excepto no B e D. Conclusão: De M0 para M1 verificou-se a modificação dos tempos e do comportamento dos músculos antigravíticos como o solear e o braquiorradial nas tarefas funcionais e uma modificação do stiffness passivo do cotovelo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.