962 resultados para Quadratic Bézier curve
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A figueira-da-índia é uma cactácea de origem mexicana, com grande potencial produtivo para as condições edafoclimáticas do Brasil, porém a falta de conhecimento faz com que a cultura seja pouco cultivada. Com o objetivo de avaliar a fenologia da figueira-da-índia, o presente trabalho foi realizado em plantas com 4 anos de idade, no espaçamento de 1,0 x 2,5 m, na área experimental da Fazenda de Ensino, Pesquisa e Extensão da Faculdade de Engenharia de Ilha Solteira - UNESP, localizada no município de Selvíria - MS, de agosto de 2006 a janeiro de 2007. O delineamento experimental utilizado foi o inteiramente casualizado, com dez repetições, com uma planta por parcela experimental, ocasião em que foram avaliados a fenologia e o crescimento dos frutos. O período de emissão das gemas concentrou-se nos meses de setembro e outubro. O florescimento, ocorreu 30 dias após a emissão da gema florífera. Os frutos atingiram a maturidade fisiológica (ponto de colheita) aos 66 dias após o florescimento e aos 72 dias apresentavam-se maduros, aptos para o consumo. O período de desenvolvimento dos frutos, desde a emissão da gema florífera até a maturidade fisiológica, foi de 96 dias. A curva de crescimento dos frutos foi do tipo quadrática. A cultura da figueira-da-índia pode tornar-se uma alternativa principalmente para pequenos produtores, visto que não exige grandes investimentos para sua implantação e condução, além de se adaptar bem às condições ambientais de nosso País. Seus frutos possuem excelentes preços tanto no mercado nacional como no internacional, e o aproveitamento na forma de doces e geleias pode incrementar a renda dos produtores.
Resumo:
Weight-age and hip height-age relations of Nellore calves, from birth to 10 months old were fitted using a logistic model including sex and year of birth as fixed effects. Calves and their dams were reared on natural pasture using continuous grazing system. The crude protein content and total digestible nutrients were analyzed for pasture selected by the animals. The weights of the calves were adjusted to 205 days and 365 days. There were no significant effects of sex and birth year on the growth curve parameters, but there were significant effects of sex on hip height. The average weight (a parameter) at 10 months of age was 170 kg and the inflection point was observed at 93.5 days old. When weight-age and hip height-age curves were combined in the same graph, the intersection occurred at 142 days. The number of days to gain 160 kg from birth to 205 days of age (adjusted) and number of days to gain 240 kg from 205 days to slaughter was different between the birth years, which were probably due to the quality of the natural pastures. It is necessary to implement nutritional management strategies such as high quality pasture and/or feeding supplementation for calves once they reach three months of age.
Resumo:
The buffalo is a domestic animal species of growing world-wide importance. Research to improve genetic improvement programs is important to maintain the productivity of buffalo. The objective this research was to evaluate the growth of Brazilian buffalo to two years of age with different growth curves. Growth curves consolidate the information contained in the weight-age data into three or four biologically meaningful parameters. The data included 31,452 weights at birth and 120, 205, 365, 550 and 730 days of buffalo (n = 5,178) raised on pasture without supplementation. Logistic, Gompertz, quadratic logarithmic, and linear hyperbolic curves (designated L, G, QL, and LH, respectively) were fitted to the data by using proc NUN of SAS (SAS Institute, Inc., Cary, NC, USA). The parameters estimates for L [WT= A * (((1 + exp (-k * AGE)))**-m)] were A = 865.1 +/- 5.42; k= 0.0028 +/- 0.00002; M= 3.808 +/- 0.007; R(2) = 0.95. For G [WT= A * exp (-b * exp (-k * age)] the parameters estimates were A= 967.6 +/- 7.23; k = 0.00217 +/- 0.000015; b = -2.8152 +/- 0.00532. For QL [WT= A + b*age + k*(age*age) + m*log (age)] parameters estimates were A= 37.41 +/- 0.48; k= 0.00019 +/- 6.4E(-6); b= 0.539 +/- 0.006; m= 2.32 +/- 0.23; R(2)=0.96. For LH [WT= A + b*AGE + k*(1/AGE)] the parameters estimates were A= 23.15 +/- 0.44; k=15.16 +/- 0.66; b= 0.707 +/- 0.001; R(2)= 0.96. Each of these curves fit these data equally well and could be used for characterizing growth to two years in beef buffalo.
Resumo:
Statement of problem. To select the width of denture teeth, the distance between the marks indicating the location of the canines is usually measured around the curvature of the wax occlusal rim; however, most manufacturers' mold charts provide the measurements of the artificial 6 anterior teeth as if they were on a straight line.Purpose. The purpose of this study was to investigate whether the curve distance between the distal surfaces of the maxillary canines can be related to the combined width (straight measurement) of the 6 anterior teeth in 4 ethnic groups.Material and methods. Maxillary stone casts were obtained for 160 dentate subjects of 4 ethnic groups (40 whites, 40 blacks, 40 multiracial - descendants of white and black parents, and 40 Asians). The width of each maxillary anterior tooth was measured on the casts with sliding calipers. The combined width of the 6 anterior teeth (CW) corresponded to the sum of the width of each anterior tooth. The curve distance between the distal surfaces of the canines (CD) was measured by using dental tape and sliding calipers. The Pearson correlation coefficient and regression analysis were used to evaluate the relationship between CD and CW in each ethnic group (alpha=.05).Results. The mean CD and CW values (in mm) obtained were: whites (CD=52.12; CW=45.65); blacks (CD=56.10; CW=48.13); multiracial (CD=53.58; CW=46.54); and Asians (CD=53.29; CW=46.60). Significant (P<.001) correlations between CD and CW measurements were observed for all ethnic groups studied (whites, r=0.957; blacks, r=0.803; multiracial, r=0.917; and Asians, r=0.881). The following linear regression equations were obtained: whites [CD=1.1(CW)+0.3]; blacks [CD=0.95(CW)+9.3]; multiracial [CD=1.2(CW)-1.1]; and Asians [CD=1.0(CW)+5].Conclusions. The curve distance between the distal surfaces of the maxillary canines can be accurately related to the combined width of the 6 anterior teeth in the selection of denture teeth for the studied ethnic groups. (J Prosthet Dent 2012;107:400-404)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study a class of quadratic reversible polynomial vector fields on S-2. We classify all the centers of this class of vector fields and we characterize its global phase portrait. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three-dimensional quadratic gravity, unlike general relativity in (2+1)D, is dynamically nontrivial and has a well behaved nonrelativistic potential. Here we analyse the changes that occur when a topological Chem-Simons term is added to this theory. It is found that the harmless massive scalar mode of the latter gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin 2. We also found that light deflection does not have the 'wrong sign' such as in the framework of three-dimensional quadratic gravity.
Resumo:
Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level.
Resumo:
We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field-Weyl, Majorana, flagpole, or flag-dipole spinor fields-yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.
Resumo:
Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.