965 resultados para Process optimization
Resumo:
The chemistry of today’s concrete mixture designs is complicated by many variables, including multiple sources of aggregate and cements and a plethora of sometimes incompatible mineral and chemical admixtures. Concrete paving has undergone significant changes in recent years as new materials have been introduced into concrete mixtures. Supplementary cementitious materials such as fly ash and ground granulated blast furnace slag are now regularly used. In addition, many new admixtures that were not even available a few years ago now have widespread usage. Adding to the complexity are construction variables such as weather, mix delivery times, finishing practices, and pavement opening schedules. Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects and is affected by the other in ways that determine overall pavement quality and long-term performance. Equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving serious gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete.
Resumo:
A systematic method to improve the quality (Q) factor of RF integrated inductors is presented in this paper. The proposed method is based on the layout optimization to minimize the series resistance of the inductor coil, taking into account both ohmic losses, due to conduction currents, and magnetically induced losses, due to eddy currents. The technique is particularly useful when applied to inductors in which the fabrication process includes integration substrate removal. However, it is also applicable to inductors on low-loss substrates. The method optimizes the width of the metal strip for each turn of the inductor coil, leading to a variable strip-width layout. The optimization procedure has been successfully applied to the design of square spiral inductors in a silicon-based multichip-module technology, complemented with silicon micromachining postprocessing. The obtained experimental results corroborate the validity of the proposed method. A Q factor of about 17 have been obtained for a 35-nH inductor at 1.5 GHz, with Q values higher than 40 predicted for a 20-nH inductor working at 3.5 GHz. The latter is up to a 60% better than the best results for a single strip-width inductor working at the same frequency.
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.
Resumo:
We present a procedure for the optical characterization of thin-film stacks from spectrophotometric data. The procedure overcomes the intrinsic limitations arising in the numerical determination of manyparameters from reflectance or transmittance spectra measurements. The key point is to use all theinformation available from the manufacturing process in a single global optimization process. The method is illustrated by a case study of solgel applications.
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.
Resumo:
Diplomityön tarkoituksena oli parantaa Stora Enso Sachsenin siistausprosessissa tuotetun uusiomassan vaaleuden kehitystä ja tutkia siihen vaikuttavia tekijöitä. Työn kirjallisessa osassa käsiteltiin uusiomassan kuidutusta ja vaahdotussiistausprosessia, sekä keräyspaperin ominaisuuksia ja käyttöä paperiteollisuuden raaka-aineena. Kokeellisessa osassa keskityttiin modifioidun natriumsilikaatin annostuksenoptimointiin ja vaikutuksiin laboratorio- ja prosessioloissa, sekä kesäefektin vaikutuksen tutkimiseen kuidutuksessa ja flotaation eri vaiheissa. Natriumsilikaatin laboratoriotutkimuksessa havaittiin, että korkein vaaleus suhteellisesti pienimmällä laboratorioflotaation häviöllä saavutettiin korkeimmalla tutkitulla natriumsilikaatin annostuksella, joka oli 1,1 %. Korkea natriumsilikaattiannostus yhdistettyinä korkeisiin vetyperoksidiannostukseen, 0,5 %, sekä korkeaan kokonaisalkaliteettiin, 0.33 %, johti korkeimpaan massan vaaleuteen ja pienimpiin häviöihin. Laboratoriotutkimuksen pohjalta modifioidulla natriumsilikaatilla suoritettiin koeajoja prosessissa. Noin 1 % natriumsilikaatin annostuksella havaittiin parempi pH:n bufferointikyky, pienempi kalsiumkarbonaatin määrä flotaation primäärivaiheissa, sekä lievästi parempi massan vaaleus verrattuna prosessissa aiemmin käytettyyn standardinatriumsilikaattiin. Kesäefektitutkimuksessa havaittiin, että kesäefektillä on suurin vaikutus esiflotaation primäärivaiheeseen, sillä primäärivaiheessa kuitujen osuus on huomattavasti suurempi kuin sekundäärivaiheissa. Esiflotaation primäärivaiheen uusiomassojen laboratorioflotaatioiden avulla saavutettujen maksimivaaleuksien ero kesän ja talven välillä oli noin 1,5 %ISO. Kesäefektin ei havaittu suuresti vaikuttavan flotaation sekundäärivaiheisiin.
Resumo:
Tutkimus keskittyy kansainväliseen hajauttamiseen suomalaisen sijoittajan näkökulmasta. Tutkimuksen toinen tavoite on selvittää tehostavatko uudet kovarianssimatriisiestimaattorit minimivarianssiportfolion optimointiprosessia. Tavallisen otoskovarianssimatriisin lisäksi optimoinnissa käytetään kahta kutistusestimaattoria ja joustavaa monimuuttuja-GARCH(1,1)-mallia. Tutkimusaineisto koostuu Dow Jonesin toimialaindekseistä ja OMX-H:n portfolioindeksistä. Kansainvälinen hajautusstrategia on toteutettu käyttäen toimialalähestymistapaa ja portfoliota optimoidaan käyttäen kahtatoista komponenttia. Tutkimusaieisto kattaa vuodet 1996-2005 eli 120 kuukausittaista havaintoa. Muodostettujen portfolioiden suorituskykyä mitataan Sharpen indeksillä. Tutkimustulosten mukaan kansainvälisesti hajautettujen investointien ja kotimaisen portfolion riskikorjattujen tuottojen välillä ei ole tilastollisesti merkitsevää eroa. Myöskään uusien kovarianssimatriisiestimaattoreiden käytöstä ei synnytilastollisesti merkitsevää lisäarvoa verrattuna otoskovarianssimatrisiin perustuvaan portfolion optimointiin.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
Inspections of pleasure boats in Spain can be carried out by collaborating entities of inspection, entities that must be authorized by the Maritime Administration. This authorization allows to perform effective inspections and technical controls of recreational crafts. Recreational crafts are subjected to surveys that are based on the registration list and on the material used in the hull. In addition, required safety equipment of the recreational boat depends on the distance that the recreational boat is authorized to navigate. Following data obtained from inspections of recreational craft, this paper aims to analyze information about hulls within dry and afloat conditions, about the equipment for rescue and safety, and about other nautical equipment; as well as to perform and improve different verifications during the inspections. All this information points to several aspects relevant for the optimization of the inspection process, the ultimate target being increasing efficiency and effectiveness, and ensuring more safety in recreational craft.
Resumo:
Russian and Baltic electricity markets are in the process of reformation and development on the way for competitive and transparent market. Nordic market also undergoes some changes on the way to market integration. Old structure and practices have been expired whereas new laws and rules come into force. The master thesis describes structure and functioning of wholesale electricity markets, cross-border connections between different countries. Additionally methods of cross-border trading using different methods of capacity allocation are disclosed. The main goal of present thesis is to study current situation at different electricity markets and observe changes coming into force as well as the capacity and electricity balances forecast in order to optimize short term power trading between countries and estimate the possible profit for the company.
Resumo:
An optimization tool has been developed to help companies to optimize their production cycles and thus improve their overall supply chain management processes. The application combines the functionality that traditional APS (Advanced Planning System) and ARP (Automatic Replenishment Program) systems provide into one optimization run. A qualitative study was organized to investigate opportunities to expand the product’s market base. Twelve personal interviews were conducted and the results were collected in industry specific production planning analyses. Five process industries were analyzed to identify the product’s suitability to each industry sector and the most important product development areas. Based on the research the paper and the plastic film industries remain the most potential industry sectors at this point. To be successful in other industry sectors some product enhancements would be required, including capabilities to optimize multiple sequential and parallel production cycles, handle sequencing of complex finishing operations and to include master planning capabilities to support overall supply chain optimization. In product sales and marketing processes the key to success is to find and reach the people who are involved directly with the problems that the optimization tool can help to solve.