953 resultados para Posicionamento. IEEE 802.11. LVWNet. Free-space Path Loss. Wireless.Linux. Testbed. Prototipação
Resumo:
The large scale development of an Intelligent Transportation System is very close. The main component of such a smart environment is the network that provides connectivity for all vehicles. Public safety is the most demanding application because requires a fast, reliable and secure communication. Although IEEE 802.11p is presently the only full wireless standard for vehicular communications, recent advancements in 3GPP LTE provide support to direct communications and the ongoing activities are also addressing the vehicle to vehicle case. This thesis focuses on the resource allocation procedures and performance of LTE-V2V. To this aim, a MATLAB simulator has been implemented and results have been obtained adopting different mobility models for both in-coverage and out-of-coverage scenarios.
Resumo:
This paper presents an IEEE 802.11p full-stack prototype implementation to data exchange among vehicles and between vehicles and the roadway infrastructures. The prototype architecture is based on FPGAs for Intermediate Frequency (IF) and base band purposes, using 802.11a based transceivers for RF interfaces. Power amplifiers were also addressed, by using commercial and in-house solutions. This implementation aims to provide technical solutions for Intelligent Transportation Systems (ITS) field, namely for tolling and traffic management related services, in order to promote safety, mobility and driving comfort through the dynamic and real-time cooperation among vehicles and/or between vehicles and infrastructures. The performance of the proposed scheme is tested under realistic urban and suburban driving conditions. Preliminary results are promising, since they comply with most of the 802.11p standard requirements.
Resumo:
Modelling the fundamental performance limits of wireless sensor networks (WSNs) is of paramount importance to understand the behaviour of WSN under worst case conditions and to make the appropriate design choices. In that direction, this paper contributes with a methodology for modelling cluster tree WSNs with a mobile sink. We propose closed form recurrent expressions for computing the worst case end to end delays, buffering and bandwidth requirements across any source-destination path in the cluster tree assuming error free channel. We show how to apply our theoretical results to the specific case of IEEE 802.15.4/ZigBee WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study, therefore validating the theoretical results through experimentation.
Resumo:
Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMOprofiles employing 2×2 space-time codes (STCs), and two of these MIMO schemes are mandatory on the downlink of Mobile WiMAX systems. One of these has full rate, and the other has full diversity, but neither of them has both of the desired features. The third profile, namely, Matrix C, which is not mandatory, is both a full rate and a full diversity code, but it has a high decoder complexity. Recently, the attention was turned to the decodercomplexity issue and including this in the design criteria, several full-rate STCs were proposed as alternatives to Matrix C. In this paper, we review these different alternatives and compare them to Matrix C in terms of performances and the correspondingreceiver complexities.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Multimedia distribution through wireless networks in the home environment presents a number of advantages which have fueled the interest of industry in recent years, such as simple connectivity and data delivery to a variety of devices. Together with High-Definition (HD) contents, multimedia wireless networks have been proposed for several applications, such as IPTV and Digital TV distribution for multiple devices in the home environment. For these scenarios, we propose a multicast distribution system for High-Definition video over 802.11 wireless networks based on rate-limited packet retransmission. We develop a limited rate ARQ system that retransmits packets according to the importance of their content (prioritization scheme) and according to their delay limitations (delay control). The performance of our proposed ARQ system is evaluated and compared with a similarly rate-limited ARQ algorithm. The results show a higher packet recovery rate and improvements in video quality for our proposed system.
Resumo:
Biometrics applied to mobile devices are of great interest for security applications. Daily scenarios can benefit of a combination of both the most secure systems and most simple and extended devices. This document presents a hand biometric system oriented to mobile devices, proposing a non-intrusive, contact-less acquisition process where final users should take a picture of their hand in free-space with a mobile device without removals of rings, bracelets or watches. The main contribution of this paper is threefold: firstly, a feature extraction method is proposed, providing invariant hand measurements to previous changes; second contribution consists of providing a template creation based on hand geometric distances, requiring information from only one individual, without considering data from the rest of individuals within the database; finally, a proposal for template matching is proposed, minimizing the intra-class similarity and maximizing the inter-class likeliness. The proposed method is evaluated using three publicly available contact-less, platform-free databases. In addition, the results obtained with these databases will be compared to the results provided by two competitive pattern recognition techniques, namely Support Vector Machines (SVM) and k-Nearest Neighbour, often employed within the literature. Therefore, this approach provides an appropriate solution to adapt hand biometrics to mobile devices, with an accurate results and a non-intrusive acquisition procedure which increases the overall acceptance from the final user.
Resumo:
By modification of the classical retrodirective arrays (RDAs) architecture a directional modulation (DM) transmitter can be realized without the need for synthesis. Importantly, through analytical analysis and exemplar simulations, it is proved that, besides the conventional DM application scenario, i.e., secure transmission to one legitimate receiver located along one spatial direction in free space, the proposed synthesis-free DM transmitter should also perform well for systems where there are more than one legitimate receivers positioned along different directions in free space, and where one or more legitimate receivers exist in a multipath environment. None of these have ever been achieved before using synthesis-free DM arrangements.
Resumo:
Quantum mechanics, optics and indeed any wave theory exhibits the phenomenon of interference. In this thesis we present two problems investigating interference due to indistinguishable alternatives and a mostly unrelated investigation into the free space propagation speed of light pulses in particular spatial modes. In chapter 1 we introduce the basic properties of the electromagnetic field needed for the subsequent chapters. In chapter 2 we review the properties of interference using the beam splitter and the Mach-Zehnder interferometer. In particular we review what happens when one of the paths of the interferometer is marked in some way so that the particle having traversed it contains information as to which path it went down (to be followed up in chapter 3) and we review Hong-Ou-Mandel interference at a beam splitter (to be followed up in chapter 5). In chapter 3 we present the first of the interference problems. This consists of a nested Mach-Zehnder interferometer in which each of the free space propagation segments are weakly marked by mirrors vibrating at different frequencies [1]. The original experiment drew the conclusions that the photons followed disconnected paths. We partition the description of the light in the interferometer according to the number of paths it contains which-way information about and reinterpret the results reported in [1] in terms of the interference of paths spatially connected from source to detector. In chapter 4 we briefly review optical angular momentum, entanglement and spontaneous parametric down conversion. These concepts feed into chapter 5 in which we present the second of the interference problems namely Hong-Ou-Mandel interference with particles possessing two degrees of freedom. We analyse the problem in terms of exchange symmetry for both boson and fermion pairs and show that the particle statistics at a beam splitter can be controlled for suitably chosen states. We propose an experimental test of these ideas using orbital angular momentum entangled photons. In chapter 6 we look at the effect that the transverse spatial structure of the mode that a pulse of light is excited in has on its group velocity. We show that the resulting group velocity is slower than the speed of light in vacuum for plane waves and that this reduction in the group velocity is related to the spread in the wave vectors required to create the transverse spatial structure. We present experimental results of the measurement of this slowing down using Hong-Ou-Mandel interference.
Resumo:
Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.
Resumo:
In this paper, a small transmit array of transistor amplifiers illuminated by a passive array of microstrip patches in the reactive near-field region is investigated as a power-combining structure. The two cases considered are when the transmit array radiates in a free space and when a passive array similar to the one used for illumination collects the radiated power. A comparison of the performance of the proposed structure against the alternative one, which uses a conventional horn antenna as a power-launching/receiving device, is also presented.
Resumo:
This paper presents the characterization of an indoor Wimax radio channel using the Finite-Difference Time-Domain (FDTD) [1] method complemented with the Convolutional Perfect Matched Layer (CPML) technique [2]. An indoor 2D scenario is simulated in the 3.5GHz band (IEEE 802.16d-2004 and IEEE 802.16e-2005 [3]). In this study, we used two complementary techniques in both analysis, technique A and B for fading based on delay spread and technique C and D for fading based on Doppler spread. Both techniques converge to the same result. Simulated results define the channel as flat, slow and without inter-symbolic interference (ISI), making the application of the spatial diversity the most appropriate scheme.
Resumo:
We consider reliable communications in Body Area Networks (BAN), where a set of nodes placed on human body are connected using wireless links. In order to keep the Specific Absorption Rate (SAR) as low as possible for health safety reasons, these networks operate in low transmit power regime, which however, is known to be error prone. It has been observed that the fluctuations of the Received Signal Strength (RSS) at the nodes of a BAN on a moving person show certain regularities and that the magnitude of these fluctuations are significant (5 - 20 dB). In this paper, we present BANMAC, a MAC protocol that monitors and predicts the channel fluctuations and schedules transmissions opportunistically when the RSS is likely to be higher. The MAC protocol is capable of providing differentiated service and resolves co-channel interference in the event of multiple co-located BANs in a vicinity. We report the design and implementation details of BANMAC integrated with the IEEE 802.15.4 protocol stack. We present experimental data which show that the packet loss rate (PLR) of BANMAC is significantly lower as compared to that of the IEEE 802.15.4 MAC. For comparable PLR, the power consumption of BANMAC is also significantly lower than that of the IEEE 802.15.4. For co-located networks, the convergence time to find a conflict-free channel allocation was approximately 1 s for the centralized coordination mechanism and was approximately 4 s for the distributed coordination mechanism.
Resumo:
The demonstration proposal moves from the capabilities of a wireless biometric badge [4], which integrates a localization and tracking service along with an automatic personal identification mechanism, to show how a full system architecture is devised to enable the control of physical accesses to restricted areas. The system leverages on the availability of a novel IEEE 802.15.4/Zigbee Cluster Tree network model, on enhanced security levels and on the respect of all the users' privacy issues.