992 resultados para Pollen development
Resumo:
A 200 m long marine pollen record from ODP Site 658 (21°N, 19°W) reveals cyclic fluctuations in vegetation and continental climate in northwestern Africa from 3.7 to 1.7 Ma. These cycles parallel oxygen isotope stages. Prior to 3.5 Ma, the distribution of tropical forests and mangrove swamps reached Cape Blanc, 5°N of the present distribution. Between 3.5 and 2.6 Ma, forests occurred at this latitude during irregular intervals and nearly disappeared afterwards. Likewise, a Saharan paleoriver flowed continuously until isotope Stage 134 (3.35 Ma). When river discharge ceased, wind transport of pollen grains prevailed over fluvial transport. Pollen indicators of trade winds gradually increased between 3.3 and 2.5 Ma. A strong aridification of the climate of northwestern Africa occurred during isotope Stage 130 (3.26 Ma). Afterwards, humid conditions reestablised followed by another aridification around 2.7 Ma. Repetitive latitudinal shifts of vegetation zones ranging from wooded savanna to desert flora dominated for the first time between between 2.6 and 2.4 Ma as a response to the glacial stages 104, 100 and 98. Although climatic conditions, recorded in the Pliocene, were not as dry as those of the middle and Late Pleistocene, latitudinal vegetation shifts near the end of the Pliocene resembled those of the interglacial-glacial cycles of the Brunhes chron.
Resumo:
To address the connection between tropical African vegetation development and high-latitude climate change we present a high-resolution pollen record from ODP Site 1078 (off Angola) covering the period 50-10 ka BP. Although several tropical African vegetation and climate reconstructions indicate an impact of Heinrich Stadials (HSs) in Southern Hemisphere Africa, our vegetation record shows no response. Model simulations conducted with an Earth System Model of Intermediate Complexity including a dynamical vegetation component provide one possible explanation. Because both precipitation and evaporation increased during HSs and their effects nearly cancelled each other, there was a negligible change in moisture supply. Consequently, the resulting climatic response to HSs might have been too weak to noticeably affect the vegetation composition in the study area. Our results also show that the response to HSs in southern tropical Africa neither equals nor mirrors the response to abrupt climate change in northern Africa.
Resumo:
To better understand the environmental variability during the Holsteinian interglacial, we have palynologically analyzed a new core from Dethlingen, northern Germany, at a decadal resolution. Our data provide insights into the vegetation dynamics and thus also climate variability during the meso- to telocratic forest phases of the interglacial. Temperate mixed forests dominated the regional landscape throughout the Holsteinian. However, changes in the forest composition during the younger stages of the interglacial suggest a climatic transition towards milder conditions in winter. The strong presence of boreal floral elements during the older stages of the Holsteinian interglacial suggests a high seasonality. In contrast, during the younger stages the development of sub-Atlantic and Atlantic floral elements suggests increasingly warm and humid climatic conditions. Peak warming during the younger stage of the Holsteinian is marked by the maximum pollen abundances of Buxus, Abies, and Quercus. Although the vegetation dynamics suggest a general warming trend throughout the Holsteinian interglacial, abrupt as well as gradual changes in the relative abundances of temperate plants indicate considerable climatic variability. In particular, two marked declines in temperate taxa leading to the transient development of boreal and sub-temperate forests indicate short-term climatic oscillations that occurred within full interglacial conditions. The palynological signatures of these two regressive phases in vegetation development differ with regard to the expansion of pioneer trees, the abundances and rates of change of temperate taxa, and the presence of frost-sensitive taxa. These differences point to different mechanisms responsible for the individual regressive phases. Assuming a correlation of the interglacial at Dethlingen with Marine Isotope Stage (MIS) 11, our data suggest that temperate forests prevailed in northern Germany during the younger parts of MIS 11c.
Resumo:
Two new Standard pollen diagrams from the raised bog Ageröds mosse in central Scania are presented and discussed. They have been made giving extensive consideration to the NAP and spores also. The new diagrams comprise in the main only the Post-glacial and can easily be compared with the earlier published Standard diagram from the bog (T. NILSSON 1935). The development of the Post-glacial Vegetation in the surroundings is also discussed and compared with the conditions in the southernmost part of the province (Bjärsjöholmssjön, T. Nilsson 1961). One of the new diagrams has been prepared in connection with the study of a core brought up by means of a special borer in order to bring about C14 datings. The core was almost ömlong and had a diameter of 6 cm. It was divided into pieces of 2-6 cm, which were preserved. After the preparation of the pollen diagram, suitable samples were selected for C14 dating. In all 33 samples, comprising the whole Post-glacial inclusive of the youngest part of the Late-glacial, were C14-dated. With the aid of the C14 dates the growth conditions of the bog are discussed. After very slow Sedimentation of predominantly minerogenous deposits in the last part of the Late-glacial, and still slow Sedimentation of gyttjas in the oldest part of the Post-glacial, the rate of growth (primarily of the gyttja) distinctly increased in the first part of the Late Boreal. A temporary retardation of the growth of the sphagnum peat at the end of the Sub-boreal is probably entirely local. The average rate of growth of the really highly humified parts of the old sphagnum peat amounts to 42 mm per Century, that of the slightly humified young sphagnum peat 81 mm per Century or somewhat more. Based on the C14-determinations, the pollen zone boundaries have been given the following approximate dates: boundary Late-glacial/Post-glacial (DR/PB) 8300 B.C., boundary Pre-boreal/Boreal (PB/BO) 7900 B.C., boundary Early Boreal/Late Boreal (BO 1/2) 6800 B.C., boundary Boreal/Atlantic (BO/AT) 6200 B.C., boundary Early Atlantic/Late Atlantic (AT 1/2) 4600 B.C. (?), boundary Atlantic/Sub-boreal (AT/SB) 3300 B.C., boundary Early Sub-boreal/Late Sub-boreal (SB 1/2) 1700-1800 B.C., boundary Sub-boreal/Sub-atlantic (SB/ SA) 300 B.C., boundary Early Sub-atlantic/Late Sub-atlantic (SA 1/2) 650 A.D.
Resumo:
To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Low temperature during microspore development increases spikelet sterility and reduces grain yield in rice (Oryza sativa L.). The objectives of this study were to determine genotypic variation in spikelet sterility in the field in response to low-temperature and then to examine the use of physio-morphological traits at flowering to screen for cold tolerance. Multiple-sown field experiments were conducted over 4 consecutive years in the rice-growing region of Australia to increase the likelihood of encountering low-temperature during microspore development. More than 50 cultivars of various origins were evaluated, with 7 cultivars common to all 4 years. The average minimum temperature for 9 days during microspore development was used as a covariate in the analysis to compare cultivars at a similar temperature. The low-temperature conditions in Year 4 identified cold-tolerant cultivars such as Hayayuki and HSC55 and susceptible cultivars such as Sasanishiki and Doongara. After low temperature conditions, spikelet sterility was negatively correlated with the number of engorged pollen grains, anther length, anther area, anther width, and stigma area. The number of engorged pollen grains and anther length were found to be facultative traits as their relationships with spikelet sterility were identified only after cold water exposure and did not exist under non-stressed conditions.
Resumo:
Increased rates of nitrogen fertilizer application lead to increased spikelet sterility. A field experiment was conducted to investigate the effects on engorged pollen production and spikelet sterility, of nitrogen and assimilate availability during microspore development, in two rice cultivars (Doongara and Amaroo) grown under two different water depths. Despite the temperature not being low enough during microspore development to cause spikelet sterility, the number of engorged pollen grains was lower in cv. Doongara than in cv. Amaroo. Nitrogen application decreased the number of engorged pollen grains per anther through increased spikelet density. Nitrogen application increased spikelet sterility as a result of increased panicle density showing pronounced indirect effect of N on spikelet sterility. Engorged pollen number was also closely related (r = -0.636*) to the nitrogen content of the leaf blade, indicating a direct negative effect of plant N status on engorged pollen production. The results suggest that the intrinsic pollen producing ability is the key element in the difference in cold tolerance between the two cultivars, particularly under high N rates. Opening the canopy for increased solar radiation interception by the treated plants increased the level of engorged pollen, indicating the importance of immediate assimilate availability for engorged pollen production. Shading reduced crop growth rate, but did not effect engorged pollen production. There was no effect of variation in assimilates production on spikelet sterility.
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.